论文标题

QLIB:面向AI的定量投资平台

Qlib: An AI-oriented Quantitative Investment Platform

论文作者

Yang, Xiao, Liu, Weiqing, Zhou, Dong, Bian, Jiang, Liu, Tie-Yan

论文摘要

定量投资旨在最大程度地提高回报率,并在一组金融工具中的连续交易期内最大程度地降低风险。最近,受AI技术在定量投资方面产生非凡创新的巨大潜力的启发,越来越多地采用了AI驱动的工作流程来进行定量研究和实践投资。在丰富定量投资方法的同时,AI技术已经为定量投资系统提出了新的挑战。特别是,定量投资的新学习范例要求基础设施升级以适应翻新的工作流程;此外,AI技术的数据驱动性质确实表明了基础架构的要求,具有更强大的性能。此外,在财务方案中应用AI技术来解决不同的任务方面存在一些独特的挑战。为了应对这些挑战并弥合AI技术与定量投资之间的差距,我们设计和开发Qlib,旨在实现潜力,增强研究的能力并创造AI技术在定量投资中的价值。

Quantitative investment aims to maximize the return and minimize the risk in a sequential trading period over a set of financial instruments. Recently, inspired by rapid development and great potential of AI technologies in generating remarkable innovation in quantitative investment, there has been increasing adoption of AI-driven workflow for quantitative research and practical investment. In the meantime of enriching the quantitative investment methodology, AI technologies have raised new challenges to the quantitative investment system. Particularly, the new learning paradigms for quantitative investment call for an infrastructure upgrade to accommodate the renovated workflow; moreover, the data-driven nature of AI technologies indeed indicates a requirement of the infrastructure with more powerful performance; additionally, there exist some unique challenges for applying AI technologies to solve different tasks in the financial scenarios. To address these challenges and bridge the gap between AI technologies and quantitative investment, we design and develop Qlib that aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源