论文标题

极端多标签分类的概率标签树

Probabilistic Label Trees for Extreme Multi-label Classification

论文作者

Jasinska-Kobus, Kalina, Wydmuch, Marek, Dembczynski, Krzysztof, Kuznetsov, Mikhail, Busa-Fekete, Robert

论文摘要

极端的多标签分类(XMLC)是一项学习任务,可以用一小部分从可能的标签库中选择的一小部分相关标签来标记实例。该量表的问题可以通过将标签组织为树来有效地处理,例如用于多类问题的层次软件中。在本文中,我们彻底研究了概率标签树(PLT),可以将其视为用于多标签问题的层次软效果的概括。我们首先介绍PLT模型,并讨论培训和推理程序及其计算成本。接下来,我们证明了PLT对于各种性能指标的一致性。为此,我们通过对节点分类器的替代损害遗憾的功能来使他们的遗憾。此外,我们考虑在完全在线环境中培训PLT的问题,而没有任何先前了解培训实例,其功能或标签的问题。在这种情况下,节点分类器和树结构都经过在线训练。我们证明了完全在线算法和具有预先给出的树结构的算法之间的特定等效性。最后,我们讨论了PLT的几种实现,并引入了一种新的NAPKinXC,我们通过经验评估并与最先进的算法进行了比较。

Extreme multi-label classification (XMLC) is a learning task of tagging instances with a small subset of relevant labels chosen from an extremely large pool of possible labels. Problems of this scale can be efficiently handled by organizing labels as a tree, like in hierarchical softmax used for multi-class problems. In this paper, we thoroughly investigate probabilistic label trees (PLTs) which can be treated as a generalization of hierarchical softmax for multi-label problems. We first introduce the PLT model and discuss training and inference procedures and their computational costs. Next, we prove the consistency of PLTs for a wide spectrum of performance metrics. To this end, we upperbound their regret by a function of surrogate-loss regrets of node classifiers. Furthermore, we consider a problem of training PLTs in a fully online setting, without any prior knowledge of training instances, their features, or labels. In this case, both node classifiers and the tree structure are trained online. We prove a specific equivalence between the fully online algorithm and an algorithm with a tree structure given in advance. Finally, we discuss several implementations of PLTs and introduce a new one, napkinXC, which we empirically evaluate and compare with state-of-the-art algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源