论文标题
双峰:强大的单相机导航框架
Dual-SLAM: A framework for robust single camera navigation
论文作者
论文摘要
SLAM(同时本地化和映射)试图提供实时自定位的移动代理。为了达到实时速度,猛击逐步传播位置估计值。这使得大满贯,但也使其容易受到本地姿势估计失败的影响。由于当地姿势估计不足,因此定期进行局部姿势估计失败,这使整体大满贯系统变得脆弱。本文试图纠正此问题。我们注意到,虽然局部姿势估计不足,但对较长序列的姿势估计得到了很好的条件。因此,局部姿势估计错误最终表现为映射不一致。发生这种情况时,我们保存当前地图并激活两个新的大满贯线程。一个处理传入的帧以创建新的地图,另一个恢复线程,回溯,将新的和旧的地图链接在一起。这创建了一个双链接框架,该框架保持实时性能,同时对本地姿势估计失败进行稳健。在基准数据集上的评估表明,双峰会可以将失败降低$ 88 \%$。
SLAM (Simultaneous Localization And Mapping) seeks to provide a moving agent with real-time self-localization. To achieve real-time speed, SLAM incrementally propagates position estimates. This makes SLAM fast but also makes it vulnerable to local pose estimation failures. As local pose estimation is ill-conditioned, local pose estimation failures happen regularly, making the overall SLAM system brittle. This paper attempts to correct this problem. We note that while local pose estimation is ill-conditioned, pose estimation over longer sequences is well-conditioned. Thus, local pose estimation errors eventually manifest themselves as mapping inconsistencies. When this occurs, we save the current map and activate two new SLAM threads. One processes incoming frames to create a new map and the other, recovery thread, backtracks to link new and old maps together. This creates a Dual-SLAM framework that maintains real-time performance while being robust to local pose estimation failures. Evaluation on benchmark datasets shows Dual-SLAM can reduce failures by a dramatic $88\%$.