论文标题
一阶通用粘性流体动力学
First-Order General-Relativistic Viscous Fluid Dynamics
论文作者
论文摘要
我们提出了Navier-Stokes理论的第一个概括,以满足以下所有属性的相对论:(a)与爱因斯坦方程相连的系统是因果关系,是因果关系; (b)平衡状态稳定; (c)所有领先的耗散贡献都存在,即剪切粘度,大量粘度和导热率; (d)包括非零的重子数; (e)熵产生在理论有效性方面是非负的; (f)上述所有内容均在非线性方案中,而没有任何简化的对称假设。这些属性是使用仅包含流体动力变量的Eckart理论的概括来完成的,因此不需要像Müller-Israel-Stewart理论那样需要新的扩展自由度。属性(b)尤其是从更一般的结果中遵循的,即我们还建立了足够的条件,当在流体的静止框架中添加稳定性时,这意味着在通过Lorentz转换获得的任何参考框架中稳定。我们所有的结果在数学上都是严格建立的。此处介绍的框架为中子星合并中的一般偏见粘性现象的系统研究提供了一个起点。
We present the first generalization of Navier-Stokes theory to relativity that satisfies all of the following properties: (a) the system coupled to Einstein's equations is causal and strongly hyperbolic; (b) equilibrium states are stable; (c) all leading dissipative contributions are present, i.e., shear viscosity, bulk viscosity, and thermal conductivity; (d) non-zero baryon number is included; (e) entropy production is non-negative in the regime of validity of the theory; (f) all of the above holds in the nonlinear regime without any simplifying symmetry assumptions. These properties are accomplished using a generalization of Eckart's theory containing only the hydrodynamic variables, so that no new extended degrees of freedom are needed as in Müller-Israel-Stewart theories. Property (b), in particular, follows from a more general result that we also establish, namely, sufficient conditions that when added to stability in the fluid's rest frame imply stability in any reference frame obtained via a Lorentz transformation. All our results are mathematically rigorously established. The framework presented here provides the starting point for systematic investigations of general-relativistic viscous phenomena in neutron star mergers.