论文标题
具有$ξ$ resmpling机制的广义垫脚石模型
Generalized stepping stone model with $Ξ$-resampling mechanism
论文作者
论文摘要
具有$ξ$ - 换采样机制的广义垫脚石模型是一个二维概率测量值的随机过程,其瞬间二元与古典垫脚石模型相似,除了Kingman的合并被$ξ$ - 粉色所取代。我们通过使用双函数值$ξ$ - 涂层过程指定其矩,并通过地理标签和迁移来证明其矩的存在,然后验证多维的Hausdorff Moment问题。我们还表征了广义垫脚石模型的固定分布,并表明如果突变算子的跳跃型均匀,它是不可逆转的。
A generalized stepping stone model with $Ξ$-resampling mechanism is a two dimensional probability-measure-valued stochastic process whose moment dual is similar to that of the classical stepping stone model except that Kingman's coalescent is replaced by $Ξ$-coalescent. We prove the existence of such a process by specifying its moments using the dual function-valued $Ξ$-coalescent process with geographical labels and migration, and then verifying a multidimensional Hausdorff moment problem. We also characterize the stationary distribution of the generalized stepping stone model and show that it is not reversible if the mutation operator is of uniform jump-type.