论文标题

基于小波的独立测试,用于功能数据,并应用于MEG功能连接

A Wavelet-Based Independence Test for Functional Data with an Application to MEG Functional Connectivity

论文作者

Miao, Rui, Zhang, Xiaoke, Wong, Raymond K. W.

论文摘要

测量和测试多个随机函数之间的依赖性通常是功能数据分析中的重要任务。在文献中,一种基于模型的方法依赖于受模型错误指定风险的模型,而无模型方法仅提供了一种相关度量,而相关度量是不足以检验独立性的。在本文中,我们采用了希尔伯特 - 史密特独立标准(HSIC)来衡量两个随机函数之间的依赖性。我们通过基于离散和嘈杂的测量来首先对每个函数进行平淡的态度,然后将HSIC应用于恢复的功能,从而开发了一个两步的过程。为了确保这两个步骤之间的兼容性,以使前平滑误差对随后的HSIC的影响无可忽视,我们建议使用小波软阈值对HSIC进行前平面和BESOV-NORM诱导的内核进行HSIC。我们还提供相应的渐近分析。在仿真研究中证明了所提出的方法的数值优于现有方法。此外,在磁脑摄影(MEG)数据应用程序中,所提出的方法确定的功能连接模式比现有方法在解释性上更为解释。

Measuring and testing the dependency between multiple random functions is often an important task in functional data analysis. In the literature, a model-based method relies on a model which is subject to the risk of model misspecification, while a model-free method only provides a correlation measure which is inadequate to test independence. In this paper, we adopt the Hilbert-Schmidt Independence Criterion (HSIC) to measure the dependency between two random functions. We develop a two-step procedure by first pre-smoothing each function based on its discrete and noisy measurements and then applying the HSIC to recovered functions. To ensure the compatibility between the two steps such that the effect of the pre-smoothing error on the subsequent HSIC is asymptotically negligible, we propose to use wavelet soft-thresholding for pre-smoothing and Besov-norm-induced kernels for HSIC. We also provide the corresponding asymptotic analysis. The superior numerical performance of the proposed method over existing ones is demonstrated in a simulation study. Moreover, in an magnetoencephalography (MEG) data application, the functional connectivity patterns identified by the proposed method are more anatomically interpretable than those by existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源