论文标题

使用可微分物理的低成本轮式移动机器人的模型识别和控制

Model Identification and Control of a Low-Cost Wheeled Mobile Robot Using Differentiable Physics

论文作者

Luo, Yanshi, Boularias, Abdeslam, Aanjaneya, Mridul

论文摘要

我们介绍了低成本的车轮移动机器人的设计,以及在运动扭矩和摩擦力的影响下预测其运动的分析模型。使用我们提出的模型,我们展示了如何分析计算适当的损耗函数的梯度,该模型衡量了预测的运动轨迹和现实世界轨迹之间的偏差,这些轨迹是使用Apriltags和架空相机估算的。这些分析梯度使我们能够通过使用梯度下降来最大程度地降低损失函数来自动推断未知的摩擦系数。优化模型预测的运动轨迹与其现实世界中的同类产品非常吻合。实验表明,我们提出的方法在计算上优于现有的黑盒系统识别方法和其他数据驱动的技术,并且还需要很少的现实样本来进行准确的轨迹预测。所提出的方法将基于第一原理的分析模型的数据效率与数据驱动方法的灵活性相结合,这使其适合低成本机器人。使用学习模型和基于梯度的优化方法,我们展示了如何自动计算电动机控制信号,以沿预先指定的曲线驱动机器人。

We present the design of a low-cost wheeled mobile robot, and an analytical model for predicting its motion under the influence of motor torques and friction forces. Using our proposed model, we show how to analytically compute the gradient of an appropriate loss function, that measures the deviation between predicted motion trajectories and real-world trajectories, which are estimated using Apriltags and an overhead camera. These analytical gradients allow us to automatically infer the unknown friction coefficients, by minimizing the loss function using gradient descent. Motion trajectories that are predicted by the optimized model are in excellent agreement with their real-world counterparts. Experiments show that our proposed approach is computationally superior to existing black-box system identification methods and other data-driven techniques, and also requires very few real-world samples for accurate trajectory prediction. The proposed approach combines the data efficiency of analytical models based on first principles, with the flexibility of data-driven methods, which makes it appropriate for low-cost robots. Using the learned model and our gradient-based optimization approach, we show how to automatically compute motor control signals for driving the robot along pre-specified curves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源