论文标题

EPNE:进化模式保存网络嵌入

EPNE: Evolutionary Pattern Preserving Network Embedding

论文作者

Wang, Junshan, Jin, Yilun, Song, Guojie, Ma, Xiaojun

论文摘要

信息网络无处不在,是建模关系数据的理想选择。网络稀疏和不规则,网络嵌入算法引起了许多研究人员的注意,他们在静态网络中提出了许多嵌入算法。然而,在现实生活中,网络不断发展。因此,进化模式,即节点如何随着时间的流逝而发展,这将是嵌入网络中静态结构的有力补充,在嵌入网络中,相对较少的工作重点。在本文中,我们提出了EPNE,这是一个时间网络嵌入模型,以保留节点局部结构的进化模式。特别是,我们分析了有或没有周期性和设计策略的进化模式,以基于因果卷积的时间频率域中对这些模式进行建模。此外,我们提出了一个时间目标函数,该目标函数与接近度相同,以便保留时间和结构信息。通过对时间信息的足够建模,我们的模型能够在各种预测任务中胜过其他竞争方法。

Information networks are ubiquitous and are ideal for modeling relational data. Networks being sparse and irregular, network embedding algorithms have caught the attention of many researchers, who came up with numerous embeddings algorithms in static networks. Yet in real life, networks constantly evolve over time. Hence, evolutionary patterns, namely how nodes develop itself over time, would serve as a powerful complement to static structures in embedding networks, on which relatively few works focus. In this paper, we propose EPNE, a temporal network embedding model preserving evolutionary patterns of the local structure of nodes. In particular, we analyze evolutionary patterns with and without periodicity and design strategies correspondingly to model such patterns in time-frequency domains based on causal convolutions. In addition, we propose a temporal objective function which is optimized simultaneously with proximity ones such that both temporal and structural information are preserved. With the adequate modeling of temporal information, our model is able to outperform other competitive methods in various prediction tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源