论文标题

用于大脑状态分类的多视图大脑超连接体自动编码器

Multi-View Brain HyperConnectome AutoEncoder For Brain State Classification

论文作者

Banka, Alin, Buzi, Inis, Rekik, Islem

论文摘要

图形嵌入是一种强大的方法,用于在低维空间中用于大脑连通性映射,预测和分类中的图形神经系统数据(例如脑连接组)。但是,现有的嵌入算法有两个主要限制。首先,他们主要集中于保留节点之间的一对一拓扑关系(即连接中的感兴趣区域(ROI)),但他们大多忽略了多对多的关系(即设置为设置),这些关系可以使用高连接组结构来捕获。其次,现有的图形嵌入技术不能轻易适应具有异质分布的多视图图数据。在本文中,尽管用超图理论交叉授粉深度学习,但我们旨在共同学习对主题的多种多视图大脑图的深层潜在嵌入,以最终消除不同的大脑状态。首先,我们提出了一种新的简单策略,以根据最近的邻居算法为每个大脑视图构建一个高连接体,以保留ROI对之间的连接性。其次,我们设计了一个高连接体自动编码器(HCAE)框架,该框架直接在基于超刻卷卷积层的多视图超连接切除术上运行,以更好地捕获大脑区域之间的多对多关系(即节点)。对于每个受试者,我们通过对抗正则化进一步将超晶自动编码定为正规化,以使学习的高连接组嵌入的分布与输入高连接切除术的分布相一致。我们将超连接器嵌入在几何深度学习框架中以优化给定主题,从而设计基于个体的学习框架。我们的实验表明,与其他深图嵌入方法方法相比,HCAE学到的嵌入为脑状态分类的结果更好。

Graph embedding is a powerful method to represent graph neurological data (e.g., brain connectomes) in a low dimensional space for brain connectivity mapping, prediction and classification. However, existing embedding algorithms have two major limitations. First, they primarily focus on preserving one-to-one topological relationships between nodes (i.e., regions of interest (ROIs) in a connectome), but they have mostly ignored many-to-many relationships (i.e., set to set), which can be captured using a hyperconnectome structure. Second, existing graph embedding techniques cannot be easily adapted to multi-view graph data with heterogeneous distributions. In this paper, while cross-pollinating adversarial deep learning with hypergraph theory, we aim to jointly learn deep latent embeddings of subject0specific multi-view brain graphs to eventually disentangle different brain states. First, we propose a new simple strategy to build a hyperconnectome for each brain view based on nearest neighbour algorithm to preserve the connectivities across pairs of ROIs. Second, we design a hyperconnectome autoencoder (HCAE) framework which operates directly on the multi-view hyperconnectomes based on hypergraph convolutional layers to better capture the many-to-many relationships between brain regions (i.e., nodes). For each subject, we further regularize the hypergraph autoencoding by adversarial regularization to align the distribution of the learned hyperconnectome embeddings with that of the input hyperconnectomes. We formalize our hyperconnectome embedding within a geometric deep learning framework to optimize for a given subject, thereby designing an individual-based learning framework. Our experiments showed that the learned embeddings by HCAE yield to better results for brain state classification compared with other deep graph embedding methods methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源