论文标题

列表同构问题的细粒度复杂性:反馈顶点集和切口

Fine-grained complexity of the list homomorphism problem: feedback vertex set and cutwidth

论文作者

Piecyk, Marta, Rzążewski, Paweł

论文摘要

对于图形,$ g,h $,从$ g $到$ h $的同态性是一个边缘保存映射,从$ v(g)$到$ v(h)$。在由\ textsc {lhom}($ h $)表示的同构问题的列表中,我们获得了一个图形$ g $,并列出了$ l:v(g)\ to 2^{v(h)} $,我们要求从$ g $到$ h $的同型同性恋,这是$ h $ coss the $ h $。 最近,Okrasa,Pigiyk和Rzą梦Ski [ESA 2020]定义了一个不变的$ i^*(h)$,并在Seth $ \ Mathcal {o}^*\ left(i^**(i^*(i^*(h)由treewidth $ \ textrm {tw}(g)的参数化,实例图$ g $。我们研究了在远程参数化下问题的复杂性。作为第一个结果,我们表明,如果参数是$ g $的最小反馈顶点集的大小,则$ i^*(h)$也是正确的复杂性基础。 然后,我们将注意力转移到$ g $的Cutwidth $ \ textrm {ctw}(g)$的参数化上。 Jansen和Nederlof〜 [ESA 2018]表明\ textsc {list $ k $ -coloring}(即,可以在时间$ \ mathcal {o}^*\ left(c^\ wher(c^{cttrm {cttwherm)中,可以在时间$ \ mathcal {O}^{ $ k $。詹森(Jansen)问这种行为是否扩展到图形同构。作为论文的主要结果,我们以负面的方式回答这个问题。我们定义了一个新图不变$ mim^*(h)$,并证明\ textsc {lhom}($ h $)问题无法在时间$ \ mathcal {o}^*\ left((mim^**(h) - \ varepsilon)^{\ varepsilon)^{\ textrm {除非塞思失败。这意味着没有$ c $,因此对于每个奇数循环,问题的非列表版本都可以在时间$ \ mathcal {o}^*\ left(c^{\ textrm {ctw}(g)}(g)} \ right)$中解决。 最后,我们概括了Jansen和Nederlof的算法,因此可以使用每个图$ H $来求解\ textsc {lhom}($ h $);它的复杂性取决于$ \ textrm {ctw}(g)$和$ h $的另一个不变性,这对于集团来说是恒定的。

For graphs $G,H$, a homomorphism from $G$ to $H$ is an edge-preserving mapping from $V(G)$ to $V(H)$. In the list homomorphism problem, denoted by \textsc{LHom}($H$), we are given a graph $G$ and lists $L: V(G) \to 2^{V(H)}$, and we ask for a homomorphism from $G$ to $H$ which additionally respects the lists $L$. Very recently Okrasa, Piecyk, and Rzążewski [ESA 2020] defined an invariant $i^*(H)$ and proved that under the SETH $\mathcal{O}^*\left (i^*(H)^{\textrm{tw}(G)}\right)$ is the tight complexity bound for \textsc{LHom}($H$), parameterized by the treewidth $\textrm{tw}(G)$ of the instance graph $G$. We study the complexity of the problem under dirretent parameterizations. As the first result, we show that $i^*(H)$ is also the right complexity base if the parameter is the size of a minimum feedback vertex set of $G$. Then we turn our attention to a parameterization by the cutwidth $\textrm{ctw}(G)$ of $G$. Jansen and Nederlof~[ESA 2018] showed that \textsc{List $k$-Coloring} (i.e., \textsc{LHom}($K_k$)) can be solved in time $\mathcal{O}^*\left (c^{\textrm{ctw}(G)}\right)$ where $c$ does not depend on $k$. Jansen asked if this behavior extends to graph homomorphisms. As the main result of the paper, we answer the question in the negative. We define a new graph invariant $mim^*(H)$ and prove that \textsc{LHom}($H$) problem cannot be solved in time $\mathcal{O}^*\left ((mim^*(H)-\varepsilon)^{\textrm{ctw}(G)}\right)$ for any $\varepsilon >0$, unless the SETH fails. This implies that there is no $c$, such that for every odd cycle the non-list version of the problem can be solved in time $\mathcal{O}^*\left (c^{\textrm{ctw}(G)} \right)$. Finally, we generalize the algorithm of Jansen and Nederlof, so that it can be used to solve \textsc{LHom}($H$) for every graph $H$; its complexity depends on $\textrm{ctw}(G)$ and another invariant of $H$, which is constant for cliques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源