论文标题
De Rham-Witt综合体上的伪造
Pseudovaluations on the De Rham-Witt complex
论文作者
论文摘要
对于在正面特征的交换环上的多项式环,我们在相关的de rham-Witt复合物上定义了一组函数,并表明它们是戴维斯,兰格和Zink的意义上的伪证。为了实现这一目标,我们明确计算了该复合物上基本元素的产品。我们还证明,可以使用这些伪证可以回收过度会议的De Rham-Witt复合物。
For a polynomial ring over a commutative ring of positive characteristic, we define on the associated de Rham-Witt complex a set of functions, and show that they are pseudovaluations in the sense of Davis, Langer and Zink. To achieve it, we explicitly compute products of basic elements on the complex. We also prove that the overconvergent de Rham-Witt complex can be recovered using these pseudovaluations.