论文标题
量子自旋系统的修改对数Sobolev不等式:经典和通勤最近的邻居相互作用
The modified logarithmic Sobolev inequality for quantum spin systems: classical and commuting nearest neighbour interactions
论文作者
论文摘要
鉴于在任何空间维度上定义在量子晶格旋转系统上定义的本地林布拉德人的均匀,无沮丧的家族,我们证明,在该系统的相对熵中,在平稳性Gibbs状态的空间混合条件下以及在有限型嵌入式块上的相对熵的快速衰减的情况下,在系统的相对熵中具有强烈的指数收敛性。我们的结果导致了对量子晶格旋转系统的改进对数Sobolev不平等的阳性的第一个例子,独立于系统大小。此外,我们表明,我们的空间混合概念是Dobrushin和Shlosman在平衡时自由能的完全分析性的量子概括的结果。后者通常保持在临界温度TC上方。我们的结果在量子信息中具有广泛的应用。作为例证,我们讨论了其中的四个:首先,使用量子最佳传输技术,我们表明,受到有限范围的经典噪声的量子退火器将在恒定退火时间后输出接近固定点的能量。其次,我们证明了Lipschitz可观察物的高斯浓度不平等,并证明特征态热假设对于某些高温吉布斯状态存在。第三,我们证明了量子施坦引理的有限区块长度的细化,以对两个吉布斯州的不对称歧视任务,以使汉密尔顿的通勤满足我们的条件。第四,在同一环境中,我们的结果暗示了对数深度的局部量子电路,以准备一类通勤的哈密顿人的吉布斯状态。
Given a uniform, frustration-free family of local Lindbladians defined on a quantum lattice spin system in any spatial dimension, we prove a strong exponential convergence in relative entropy of the system to equilibrium under a condition of spatial mixing of the stationary Gibbs states and the rapid decay of the relative entropy on finite-size blocks. Our result leads to the first examples of the positivity of the modified logarithmic Sobolev inequality for quantum lattice spin systems independently of the system size. Moreover, we show that our notion of spatial mixing is a consequence of the recent quantum generalization of Dobrushin and Shlosman's complete analyticity of the free-energy at equilibrium. The latter typically holds above a critical temperature Tc. Our results have wide-ranging applications in quantum information. As an illustration, we discuss four of them: first, using techniques of quantum optimal transport, we show that a quantum annealer subject to a finite range classical noise will output an energy close to that of the fixed point after constant annealing time. Second, we prove Gaussian concentration inequalities for Lipschitz observables and show that the eigenstate thermalization hypothesis holds for certain high-temperture Gibbs states. Third, we prove a finite blocklength refinement of the quantum Stein lemma for the task of asymmetric discrimination of two Gibbs states of commuting Hamiltonians satisfying our conditions. Fourth, in the same setting, our results imply the existence of a local quantum circuit of logarithmic depth to prepare Gibbs states of a class of commuting Hamiltonians.