论文标题
从高丁整合型号到$ d $二维的多个共形块
From Gaudin Integrable Models to $d$-dimensional Multipoint Conformal Blocks
论文作者
论文摘要
在这项工作中,我们启动了一种基于整合性的方法,以用于更高维度的磁场理论的多点共形块。我们的主要观察结果是,对于$ n $ n $点功能的保形块可能被视为可集成的高丹汉密尔顿人的本征函数。这为我们提供了一组完整的微分方程,可用于评估多点块。
In this work we initiate an integrability-based approach to multipoint conformal blocks for higher dimensional conformal field theories. Our main observation is that conformal blocks for $N$-point functions may be considered as eigenfunctions of integrable Gaudin Hamiltonians. This provides us with a complete set of differential equations that can be used to evaluate multipoint blocks.