论文标题

基于泰勒系列扩展的数值方法:针对非平滑解决方案问题的底漆,性能基准测试和新方法

Taylor-series expansion based numerical methods: a primer, performance benchmarking and new approaches for problems with non-smooth solutions

论文作者

Jacquemin, Thibault, Tomar, Satyendra, Agathos, Konstantinos, Mohseni-Mofidi, Shoya, Bordas, Stéphane P. A.

论文摘要

我们为基于泰勒系列扩展的数值方法提供了引物,例如广义有限差异方法和搭配方法。我们为这些方法以及所有数据文件提供了详细的基准测试策略,包括输入文件,边界条件,点分布和解决方案字段,以促进新方法的未来基准测试。我们回顾了过去十年中出现的传统方法和最近出现的方法。我们旨在帮助新移民了解这些方法的主要特征,并提供足够的信息来简化新方法的实现和基准测试。其中一些示例是在传统上众所周知要执行低于标准的问题的子集中选择的,即在寻求的解决方案时是不平滑的,即包含不连续性,奇异性或尖锐的梯度。对于此类问题和其他具有平滑溶液的简单问题,我们深入研究了给定支持中重量函数,校正功能和节点数量的影响。我们还提出了新的稳定方法,以提高数值方法的准确性。特别是,我们尝试使用Voronoi图来进行体重计算,搭配方法稳定方法以及支持奇异溶液问题的节点选择。通过适当选择上述参数,将所得的搭配方法与移动最小二乘法(及其变化),径向基函数有限差方法和有限元方法进行比较。涉及两个和三维问题的广泛测试表明,即使对于非平滑溶液,这些方法在效率(准确性与计算时间与计算时间)方面的性能很好。

We provide a primer to numerical methods based on Taylor series expansions such as generalized finite difference methods and collocation methods. We provide a detailed benchmarking strategy for these methods as well as all data files including input files, boundary conditions, point distribution and solution fields, so as to facilitate future benchmarking of new methods. We review traditional methods and recent ones which appeared in the last decade. We aim to help newcomers to the field understand the main characteristics of these methods and to provide sufficient information to both simplify implementation and benchmarking of new methods. Some of the examples are chosen within a subset of problems where collocation is traditionally known to perform sub-par, namely when the solution sought is non-smooth, i.e. contains discontinuities, singularities or sharp gradients. For such problems and other simpler ones with smooth solutions, we study in depth the influence of the weight function, correction function, and the number of nodes in a given support. We also propose new stabilization approaches to improve the accuracy of the numerical methods. In particular, we experiment with the use of a Voronoi diagram for weight computation, collocation method stabilization approaches, and support node selection for problems with singular solutions. With an appropriate selection of the above-mentioned parameters, the resulting collocation methods are compared to the moving least-squares method (and variations thereof), the radial basis function finite difference method and the finite element method. Extensive tests involving two and three dimensional problems indicate that the methods perform well in terms of efficiency (accuracy versus computational time), even for non-smooth solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源