论文标题

贝叶斯拓扑学习用于分类生物网络的结构

Bayesian Topological Learning for Classifying the Structure of Biological Networks

论文作者

Maroulas, Vasileios, Micucci, Cassie Putman, Nasrin, Farzana

论文摘要

肌动蛋白细胞骨架网络由于网络孔的数量,大小和形状的自然变化而产生局部拓扑特征。持久性同源性是一种探索数据的拓扑特性并将其总结为持久图的方法。在这项工作中,我们通过将它们转换为持久图来分析和对这些细丝网络进行分类,这些灯丝网络通过在持久图的空间上通过贝叶斯框架量化可变性。拟议的广义贝叶斯框架采用了持久图的独立且分布的群集点过程表征,并依赖于替代可能性参数。该框架提供了同时估算持久图和后空间分布中点的后基质分布的灵活性。在高斯混合物和二项式的假设下,我们为先前强度和心脏性的二项式提出了封闭形式的后期形式。使用此后验计算,我们实现了贝叶斯因子算法来对肌动蛋白细丝网络进行分类,并根据几种最先进的分类方法进行基准测试。

Actin cytoskeleton networks generate local topological signatures due to the natural variations in the number, size, and shape of holes of the networks. Persistent homology is a method that explores these topological properties of data and summarizes them as persistence diagrams. In this work, we analyze and classify these filament networks by transforming them into persistence diagrams whose variability is quantified via a Bayesian framework on the space of persistence diagrams. The proposed generalized Bayesian framework adopts an independent and identically distributed cluster point process characterization of persistence diagrams and relies on a substitution likelihood argument. This framework provides the flexibility to estimate the posterior cardinality distribution of points in a persistence diagram and the posterior spatial distribution simultaneously. We present a closed form of the posteriors under the assumption of Gaussian mixtures and binomials for prior intensity and cardinality respectively. Using this posterior calculation, we implement a Bayes factor algorithm to classify the actin filament networks and benchmark it against several state-of-the-art classification methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源