论文标题

调整Word2Vec用于大规模推荐系统

Tuning Word2vec for Large Scale Recommendation Systems

论文作者

Chamberlain, Benjamin P., Rossi, Emanuele, Shiebler, Dan, Sedhain, Suvash, Bronstein, Michael M.

论文摘要

Word2Vec是一种功能强大的机器学习工具,它是从天然局限性处理(NLP)中出现的,现在已应用于多个域,包括ROCOM-MENDER SYSTEMS,预测和网络分析。由于Word2Vec经常在架子上使用,因此我们解决了一个问题,即默认的超参数适合推荐系统。答案强调否定。在本文中,Wefirst阐明了超参数优化的重要性,并表明未约束优化的命中率比TheDefault参数平均提高了221%。但是,不受约束的优化导致高参数非常昂贵,对于大规模推荐任务而言不可行。为此,我们通过Aruntime预算受限的超参数优化证明了138%的命中率提高138%。此外,为了适用于大规模推荐问题的capehyperparameter优化,目标数据集太大而无法搜索,我们研究了从样品中进行概括性参数设置。我们表明,仅使用10%的数据样本应用受约束的Hy-Per-perparameter优化,当应用于TheFull数据集时,命中率仍然比默认参数的平均命中率提高了91%。最后,我们应用了使用我们的样本构造优化方法学到的超参数,以遵循推荐服务Twitter,并能够将后续率提高15%。

Word2vec is a powerful machine learning tool that emerged from Natural Lan-guage Processing (NLP) and is now applied in multiple domains, including recom-mender systems, forecasting, and network analysis. As Word2vec is often used offthe shelf, we address the question of whether the default hyperparameters are suit-able for recommender systems. The answer is emphatically no. In this paper, wefirst elucidate the importance of hyperparameter optimization and show that un-constrained optimization yields an average 221% improvement in hit rate over thedefault parameters. However, unconstrained optimization leads to hyperparametersettings that are very expensive and not feasible for large scale recommendationtasks. To this end, we demonstrate 138% average improvement in hit rate with aruntime budget-constrained hyperparameter optimization. Furthermore, to makehyperparameter optimization applicable for large scale recommendation problemswhere the target dataset is too large to search over, we investigate generalizinghyperparameters settings from samples. We show that applying constrained hy-perparameter optimization using only a 10% sample of the data still yields a 91%average improvement in hit rate over the default parameters when applied to thefull datasets. Finally, we apply hyperparameters learned using our method of con-strained optimization on a sample to the Who To Follow recommendation serviceat Twitter and are able to increase follow rates by 15%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源