论文标题

限制图表中的意大利统治

Restrained Italian domination in graphs

论文作者

Samadi, Babak, Alishahi, Morteza, Masoumi, Iman, Mojdeh, Doost Ali

论文摘要

对于图$ g =(v(g),e(g))$,意大利主导函数(ID函数)$ f:v(g)顶点分配了$ 1 $ $ f $。 ID函数的重量为$ \ sum_ {v \ in V(g)} f(v)$。意大利统治数是$ g $的所有ID功能所取的最小权重。 在本文中,我们启动了ID函数变体的研究。 $ g $的限制性意大利主导功能(RID功能)$ f $是$ g $的ID功能,该子图由$ \ {v \ in v(g)\ mid f(g)\ mid f(v)= 0 \} $没有孤立的顶点,意大利的意大利统治数量$qugγ_{ri g)(ri g)$ rid plotions $ rid rid is plos take take take y rif take take y rif take take。我们首先证明计算此参数的问题是NP-HARD,即使仅限于两部分图和弦图以及最高度五度的平面图。我们证明,$γ_{ri}(t)$对于订单的$ n \ geq3 $与双星$ s_ {2,2} $不同,可以从下面的限制为$(n+3)/2 $。此外,本文中所有的极端树木的所有极端树木均具有特征。我们还为此参数提供了一些尖锐的界限,并给出图形的特征​​$ g $,带有大或大$γ_{ri}(g)$。

For a graph $G=(V(G),E(G))$, an Italian dominating function (ID function) $f:V(G)\rightarrow\{0,1,2\}$ has the property that for every vertex $v\in V(G)$ with $f(v)=0$, either $v$ is adjacent to a vertex assigned $2$ under $f$ or $v$ is adjacent to least two vertices assigned $1$ under $f$. The weight of an ID function is $\sum_{v\in V(G)}f(v)$. The Italian domination number is the minimum weight taken over all ID functions of $G$. In this paper, we initiate the study of a variant of ID functions. A restrained Italian dominating function (RID function) $f$ of $G$ is an ID function of $G$ for which the subgraph induced by $\{v\in V(G)\mid f(v)=0\}$ has no isolated vertices, and the restrained Italian domination number $γ_{rI}(G)$ is the minimum weight taken over all RID functions of $G$. We first prove that the problem of computing this parameter is NP-hard, even when restricted to bipartite graphs and chordal graphs as well as planar graphs with maximum degree five. We prove that $γ_{rI}(T)$ for a tree $T$ of order $n\geq3$ different from the double star $S_{2,2}$ can be bounded from below by $(n+3)/2$. Moreover, all extremal trees for this lower bound are characterized in this paper. We also give some sharp bounds on this parameter for general graphs and give the characterizations of graphs $G$ with small or large $γ_{rI}(G)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源