论文标题
一种模型的在线操作车辆安全性测试(扩展版)的方法
A Modeled Approach for Online Adversarial Test of Operational Vehicle Safety (extended version)
论文作者
论文摘要
基于方案的操作车辆安全测试介绍了一组主要的其他车辆(POV)轨迹,该轨迹试图迫使主体车辆(SV)陷入一定的安全至关重要的情况。当前的情况主要是(i)统计驱动的:受到人类驾驶员崩溃数据的启发,(ii)确定性:POV轨迹是预定的,并且独立于SV响应,并且(iii)过于简化:在抽象运动计划级别执行的有限动作集上定义。这种基于方案的测试(i)缺乏严重性的保证,(ii)具有预定义的操作,可以轻松使用智能驾驶政策来进行测试,而(iii)在生产有限且昂贵的测试工作的安全关键实例中效率低下。我们为多个POV提出了一个模型驱动的在线反馈控制策略,该政策传播了有效的对抗轨迹,同时尊重交通规则和其他作为可接受的州行动空间的问题。该方法是在锚定板层次结构中提出的,模板模型规划在标准假设下诱导理论SV捕获保证。然后,将计划的对抗轨迹通过应用于全系统或锚模型的低级控制器跟踪。通过各种模拟示例,通过参数化的自动驾驶策略或人类驱动程序控制的SV来说明该方法的有效性。
The scenario-based testing of operational vehicle safety presents a set of principal other vehicle (POV) trajectories that seek to force the subject vehicle (SV) into a certain safety-critical situation. Current scenarios are mostly (i) statistics-driven: inspired by human driver crash data, (ii) deterministic: POV trajectories are pre-determined and are independent of SV responses, and (iii) overly simplified: defined over a finite set of actions performed at the abstracted motion planning level. Such scenario-based testing (i) lacks severity guarantees, (ii) has predefined maneuvers making it easy for an SV with intelligent driving policies to game the test, and (iii) is inefficient in producing safety-critical instances with limited and expensive testing effort. We propose a model-driven online feedback control policy for multiple POVs which propagates efficient adversarial trajectories while respecting traffic rules and other concerns formulated as an admissible state-action space. The approach is formulated in an anchor-template hierarchy structure, with the template model planning inducing a theoretical SV capturing guarantee under standard assumptions. The planned adversarial trajectory is then tracked by a lower-level controller applied to the full-system or the anchor model. The effectiveness of the methodology is illustrated through various simulated examples with the SV controlled by either parameterized self-driving policies or human drivers.