论文标题

EEG通道插值使用深层编码器Netwoks

EEG Channel Interpolation Using Deep Encoder-decoder Netwoks

论文作者

Saba-Sadiya, Sari, Alhanai, Tuka, Liu, Taosheng, Ghassemi, Mohammad M.

论文摘要

电极“ pop”伪像源于表面和电极之间的连通性自发丧失。脑电图(EEG)使用一系列密集的电极阵列,因此“弹出”段是在脑电图数据集合中看到的最普遍的人工类型之一。在许多情况下,脑电图数据的连续性对于下游应用程序(例如大脑机界面)至关重要,并且要求精确插入弹出段。在本文中,我们使用深层编码器网络将插值问题作为一个自学习任务。我们将方法与公开可用的脑电图数据集的当代插值方法进行了比较。当对模型培训期间未使用的受试者和任务进行测试时,我们的方法比当代方法表现出约15%的改善。我们演示了如何使用转移学习在新颖的主题和任务上进一步提高模型的性能。与本研究相关的所有代码和数据都是开源的,以便于扩展和实际使用。据我们所知,这项工作是使用深度学习的EEG插值问题的第一个解决方案。

Electrode "pop" artifacts originate from the spontaneous loss of connectivity between a surface and an electrode. Electroencephalography (EEG) uses a dense array of electrodes, hence "popped" segments are among the most pervasive type of artifact seen during the collection of EEG data. In many cases, the continuity of EEG data is critical for downstream applications (e.g. brain machine interface) and requires that popped segments be accurately interpolated. In this paper we frame the interpolation problem as a self-learning task using a deep encoder-decoder network. We compare our approach against contemporary interpolation methods on a publicly available EEG data set. Our approach exhibited a minimum of ~15% improvement over contemporary approaches when tested on subjects and tasks not used during model training. We demonstrate how our model's performance can be enhanced further on novel subjects and tasks using transfer learning. All code and data associated with this study is open-source to enable ease of extension and practical use. To our knowledge, this work is the first solution to the EEG interpolation problem that uses deep learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源