论文标题
动力纠缠
Dynamical Entanglement
论文作者
论文摘要
与量子状态的纠缠不同,对两分性通道的纠缠鲜为人知,称为动力纠缠。在这里,我们与超级通道的部分转置合作,并使用它来定义可计算的动态纠缠度量,例如消极性。我们表明,它的最大含量消极情绪代表了确切的渐近动力纠缠成本。我们发现了一个动态纠缠措施的家族,这些措施在本地操作和经典沟通以及具有积极部分转置的操作下为两分性通道模拟提供了必要和充分的条件。
Unlike the entanglement of quantum states, very little is known about the entanglement of bipartite channels, called dynamical entanglement. Here we work with the partial transpose of a superchannel, and use it to define computable measures of dynamical entanglement, such as the negativity. We show that a version of it, the max-logarithmic negativity, represents the exact asymptotic dynamical entanglement cost. We discover a family of dynamical entanglement measures that provide necessary and sufficient conditions for bipartite channel simulation under local operations and classical communication and under operations with positive partial transpose.