论文标题

与边缘类的多类分类的自加权强大的LDA

Self-Weighted Robust LDA for Multiclass Classification with Edge Classes

论文作者

Yan, Caixia, Chang, Xiaojun, Luo, Minnan, Zheng, Qinghua, Zhang, Xiaoqin, Li, Zhihui, Nie, Feiping

论文摘要

线性判别分析(LDA)是一种学习多级分类的最判别特征的流行技术。绝大多数现有的LDA算法容易由班级主导,与其他LDA算法相比,偏离其他算法,即边缘类,这种算法经常出现在多级分类中。首先,边缘类的存在通常会使总平均值在阶级散点矩阵的计算中偏差。其次,基于L2-Norm的剥削阶段距离标准放大了与边缘类相对应的极大距离。在这方面,提出了一种新型的自加权鲁棒LDA,其基于L21-norm的成对距离距离标准(称为SWRLDA)是针对多类分类的,尤其是在边缘类中。 SWRLDA可以自动避免最佳的平均计算,并同时学习每个类对的自适应权重,而无需设置任何其他参数。利用有效的重新加权算法来得出具有挑战性的L21-Norm最大化问题的全局最佳。拟议的SWRLDA易于实现,并且在实践中会快速收敛。广泛的实验表明,SWRLDA与合成和现实世界数据集的其他比较方法相比,同时提出了与其他技术相比的卓越计算效率。

Linear discriminant analysis (LDA) is a popular technique to learn the most discriminative features for multi-class classification. A vast majority of existing LDA algorithms are prone to be dominated by the class with very large deviation from the others, i.e., edge class, which occurs frequently in multi-class classification. First, the existence of edge classes often makes the total mean biased in the calculation of between-class scatter matrix. Second, the exploitation of l2-norm based between-class distance criterion magnifies the extremely large distance corresponding to edge class. In this regard, a novel self-weighted robust LDA with l21-norm based pairwise between-class distance criterion, called SWRLDA, is proposed for multi-class classification especially with edge classes. SWRLDA can automatically avoid the optimal mean calculation and simultaneously learn adaptive weights for each class pair without setting any additional parameter. An efficient re-weighted algorithm is exploited to derive the global optimum of the challenging l21-norm maximization problem. The proposed SWRLDA is easy to implement, and converges fast in practice. Extensive experiments demonstrate that SWRLDA performs favorably against other compared methods on both synthetic and real-world datasets, while presenting superior computational efficiency in comparison with other techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源