论文标题
一维准晶体的声子透射率
Phonon transmittance of one dimensional quasicrystals
论文作者
论文摘要
在准晶体中,特殊的平铺模式可能会导致独特的物理现象,例如与周期系统不同的关键状态。在本文中,我们研究了上周期系统中的准周期性如何导致异常的声子模式,尤其是专注于一维准晶体中的热透射率。与周期性或无骨架随机系统不同,我们对某些准晶体进行了分类,可以托管关键的声子模式,其运输属性是根据其模式的同类同胞的拓扑保护。从讨论一般规则开始找到这种关键的声子模式,我们讨论了准膜系统中拓扑上不同的热透射率的分类。更具体地说,我们举例说明(装饰)金属均值的瓷砖和cantor瓷砖,并为谐振和衰减的声子模式提供了通用特征,这是准周期强度的函数。我们的研究铺平了一种基于拓扑分类的准周期系统的热透射率的新方法,并提供了准晶体作为控制大型声子模式的强大候选者。
In quasicrystals, special tiling patterns could give rise to unique physical phenomena such as critical states distinct from periodic systems. In this paper, we study how quasi-periodicity in aperiodic systems results in anomalous phonon modes, especially focusing on thermal transmittance in one-dimensional quasicrystals. Unlike periodic or compeletly random systems, we classify certain quasicrystals could host critical phonon modes whose transport properties are topologically protected based on their pattern equivariant cohomology group of supertilings. Starting from discussing general rule to find such critical phonon modes, we discuss classification of topologically distinct thermal transmittance in quasiperiodic systems. To be more specific, we exemplify (decorated) metallic-mean tilings and Cantor tiling, and derive universal features for resonant and decaying phonon modes as a function of quasi-periodic strength. Our study paves a new way to understand thermal transmittance of quasi-periodic systems based on the topological classification and offers quasicrystals as strong candidates to control drastic phonon modes.