论文标题

威尔逊 - 不是霍夫特线作为传输矩阵

Wilson-'t Hooft lines as transfer matrices

论文作者

Maruyoshi, Kazunobu, Ota, Toshihiro, Yagi, Junya

论文摘要

我们在四维$ \ mathcal {n} = 2 $ supersymmetric量规的理论和由圆形颤动和转移矩阵中描述的四维$ \ mathcal {n} = 2 $ suppersymmetric量规和从三角L仪为三角量子量子集成系统的动力学构建的转移矩阵所描述的对应关系。我们计算扭曲产品空间中Wilson't Hooft线的真空期望值$ s^1 \times_ε\ Mathbb {r}^2 \ times \ times \ mathbb {r} $通过supersymmetric notization通过supersymmetric Neribization,并表明它们等于wigner the wigner the wigner the the the the Compans imprices the Transpers。 AGT对应关系的一种变体意味着在TODA理论中对传输矩阵的识别,我们也验证了这一点。我们解释了这些现场理论的设置如何通过嵌入弦理论和二元性与四维的Chern-Simons理论相关。

We establish a correspondence between a class of Wilson-'t Hooft lines in four-dimensional $\mathcal{N} = 2$ supersymmetric gauge theories described by circular quivers and transfer matrices constructed from dynamical L-operators for trigonometric quantum integrable systems. We compute the vacuum expectation values of the Wilson-'t Hooft lines in a twisted product space $S^1 \times_ε\mathbb{R}^2 \times \mathbb{R}$ by supersymmetric localization and show that they are equal to the Wigner transforms of the transfer matrices. A variant of the AGT correspondence implies an identification of the transfer matrices with Verlinde operators in Toda theory, which we also verify. We explain how these field theory setups are related to four-dimensional Chern-Simons theory via embedding into string theory and dualities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源