论文标题

具有可自定义外骨骼控制的复杂刚度人体阻抗模型

A Complex Stiffness Human Impedance Model with Customizable Exoskeleton Control

论文作者

He, Binghan, Huang, Huang, Thomas, Gray C., Sentis, Luis

论文摘要

人类操作员的力与运动之间的自然阻抗或动态关系可以确定使用相互作用 - 扭转反馈来扩大人类强度的外骨骼的稳定性。尽管通常将人类阻抗建模为线性系统,但我们对涉及10个人类受试者的单关节外骨骼测试床的实验显示了非线性行为的证据:低频渐近阶段,该阶段是人类的动态刚度,该僵硬阶段与预期的零,并且出乎意料的是一致的阻尼率,并且是刚性和僵硬的刚度和刚性。为了解释这些观察结果,本文考虑了一个新的频域模型,该模型具有复杂的值刚度,其中包括真正的刚度项和滞后性阻尼项。使用统计f检验,我们表明滞后性阻尼项不仅显着,而且比线性阻尼项更重要。进一步的分析揭示了连接滞后阻尼和刚度的实际部分的线性趋势,这使我们能够将复杂的刚度模型简化为1参数系统。然后,我们介绍并演示了一种可自定义的分数控制器,该控制器利用这种滞后阻尼行为来改善强度放大带宽的同时保持稳定性,并探索一种调谐方法,以确保这种稳定性能够强大的肌肉对每个人的肌肉共同收集。

The natural impedance, or dynamic relationship between force and motion, of a human operator can determine the stability of exoskeletons that use interaction-torque feedback to amplify human strength. While human impedance is typically modelled as a linear system, our experiments on a single-joint exoskeleton testbed involving 10 human subjects show evidence of nonlinear behavior: a low-frequency asymptotic phase for the dynamic stiffness of the human that is different than the expected zero, and an unexpectedly consistent damping ratio as the stiffness and inertia vary. To explain these observations, this paper considers a new frequency-domain model of the human joint dynamics featuring complex value stiffness comprising a real stiffness term and a hysteretic damping term. Using a statistical F-test we show that the hysteretic damping term is not only significant but is even more significant than the linear damping term. Further analysis reveals a linear trend linking hysteretic damping and the real part of the stiffness, which allows us to simplify the complex stiffness model down to a 1-parameter system. Then, we introduce and demonstrate a customizable fractional-order controller that exploits this hysteretic damping behavior to improve strength amplification bandwidth while maintaining stability, and explore a tuning approach which ensures that this stability property is robust to muscle co-contraction for each individual.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源