论文标题
样本和聚集:低内存MPC模型中的快速统治集算法
Sample-and-Gather: Fast Ruling Set Algorithms in the Low-Memory MPC Model
论文作者
论文摘要
在对称性破坏问题上的最新进展,例如最大独立集(MIS)和最大匹配,大规模平行计算(MPC)模型(例如Behnezhad等人〜PODC 2019; Ghaffari-Uitto Soda 2019),我们研究了该模型中的统治集合问题的复杂性。 MPC模型已成为大型分布式计算的模型非常流行,并且受到限制,即每机械记忆在输入尺寸中强烈地倾斜。对于图形问题,已经设计了非常快的MPC算法,假设$ \tildeΩ(n)$每台机存储器,其中$ n $是图中的节点数量(例如,$ o(\ log \ log \ log \ log n)$ mis algorithm of Ghaffari等人的Ghaffari等人,PODC 2018)。但是,事实证明,在低内存MPC模型中设计快速MPC算法的快速MPC算法要困难得多,在低内存MPC模型中,每款内存的内存仅限于在节点的数量上强烈倾斜,即$ 0 <\ eps <\ eps <1 $。 在本文中,我们提出了一种针对2条设置问题的算法,以$ \ tilde {o}(\ log^{1/6}δ)$ rounds $ rounds Whp运行,以低模式MPC模型。然后,我们将此结果扩展到任何整数$β> 1 $的$β$悬挂集。具体来说,我们表明,可以在$ o(n^\ eps)$ per-per-machine中以$ \ tilde {o}(β\ cdot \ cdot \ log^{1/(2^{β+1} -2} -2} -2} -2} -2} -2}} $ founds $ founds $ founds $ folds $ founds $ folds $ yrps $ folds $ folds $ folds $ folds $ folds $ folds,我们表明可以在低模式MPC模型中计算出$β$挂钩集。由此立即得出,可以在仅以$ o(β\ log \ log \ log n)$ rounds whp中计算出$β$ - 符合$β$ - 符号设置。以上结果假定总内存为$ \ tilde {o}(m + n^{1+ \ eps})$。我们还提出了$β$ - 悬挂集的算法在低模型MPC模型中,假设所有机器上的总内存仅限于$ \ tilde {o}(m)$。
Motivated by recent progress on symmetry breaking problems such as maximal independent set (MIS) and maximal matching in the low-memory Massively Parallel Computation (MPC) model (e.g., Behnezhad et al.~PODC 2019; Ghaffari-Uitto SODA 2019), we investigate the complexity of ruling set problems in this model. The MPC model has become very popular as a model for large-scale distributed computing and it comes with the constraint that the memory-per-machine is strongly sublinear in the input size. For graph problems, extremely fast MPC algorithms have been designed assuming $\tildeΩ(n)$ memory-per-machine, where $n$ is the number of nodes in the graph (e.g., the $O(\log\log n)$ MIS algorithm of Ghaffari et al., PODC 2018). However, it has proven much more difficult to design fast MPC algorithms for graph problems in the low-memory MPC model, where the memory-per-machine is restricted to being strongly sublinear in the number of nodes, i.e., $O(n^\eps)$ for $0 < \eps < 1$. In this paper, we present an algorithm for the 2-ruling set problem, running in $\tilde{O}(\log^{1/6} Δ)$ rounds whp, in the low-memory MPC model. We then extend this result to $β$-ruling sets for any integer $β> 1$. Specifically, we show that a $β$-ruling set can be computed in the low-memory MPC model with $O(n^\eps)$ memory-per-machine in $\tilde{O}(β\cdot \log^{1/(2^{β+1}-2)} Δ)$ rounds, whp. From this it immediately follows that a $β$-ruling set for $β= Ω(\log\log\log Δ)$-ruling set can be computed in in just $O(β\log\log n)$ rounds whp. The above results assume a total memory of $\tilde{O}(m + n^{1+\eps})$. We also present algorithms for $β$-ruling sets in the low-memory MPC model assuming that the total memory over all machines is restricted to $\tilde{O}(m)$.