论文标题

增强神经认知共享的视觉运动模型,以识别对象识别,本地化和从辅助任务中学习

Enhancing a Neurocognitive Shared Visuomotor Model for Object Identification, Localization, and Grasping With Learning From Auxiliary Tasks

论文作者

Kerzel, Matthias, Abawi, Fares, Eppe, Manfred, Wermter, Stefan

论文摘要

我们对统一的视觉神经模型进行了一项后续研究,以识别,本地化和掌握具有多个对象的场景中的目标对象的机器人任务。我们的基于视网膜的模型可以通过生物学启发的发育方法对视觉运动能力进行端到端培训。在我们最初的实施中,神经模型能够从平面表面掌握选定的对象。我们在尼科类人形机器人上体现了该模型。在这项后续研究中,我们将任务和模型扩展到在三维空间中使用基于增强现实和模拟环境的新型数据集的对象。我们通过辅助任务来评估培训的影响,即,通过学习对主要视觉运动任务的学习支持,通过学习进行分类和定位不同的对象。我们表明,所提出的视觉运动模型可以学会在三维空间中访问对象。我们根据对象位置或属性分析了生物学上偏差的结果。我们表明,主要的视觉运动任务可以通过两个辅助任务之一成功地同时训练。这是通过具有共享和特定于任务的组件的复杂神经认知模型来实现的,类似于生物系统中的模型。

We present a follow-up study on our unified visuomotor neural model for the robotic tasks of identifying, localizing, and grasping a target object in a scene with multiple objects. Our Retinanet-based model enables end-to-end training of visuomotor abilities in a biologically inspired developmental approach. In our initial implementation, a neural model was able to grasp selected objects from a planar surface. We embodied the model on the NICO humanoid robot. In this follow-up study, we expand the task and the model to reaching for objects in a three-dimensional space with a novel dataset based on augmented reality and a simulation environment. We evaluate the influence of training with auxiliary tasks, i.e., if learning of the primary visuomotor task is supported by learning to classify and locate different objects. We show that the proposed visuomotor model can learn to reach for objects in a three-dimensional space. We analyze the results for biologically-plausible biases based on object locations or properties. We show that the primary visuomotor task can be successfully trained simultaneously with one of the two auxiliary tasks. This is enabled by a complex neurocognitive model with shared and task-specific components, similar to models found in biological systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源