论文标题
Magidor-Radin强迫中的中间模型 - 第一部分
Intermediate Models in Magidor-Radin Forcing- Part I
论文作者
论文摘要
我们继续由Gitik,Kanovei,Koepke以及后来的作者完成的工作。我们证明,对于每个集合的Magidor-Radin通用扩展,使用一个连贯的序列,因此Magidor Club的子集$ C'$ C'$ V [a] = v [c'] $。另外,我们对所有中间$ ZFC $ transitive Models $ v \ subseteq M \ subseteq v [g] $进行了分类。
We continue the work done by Gitik, Kanovei, Koepke, and later by the authors. We prove that for every set $A$ in a Magidor-Radin generic extension using a coherent sequence such that $o^{\vec{U}}(κ)<κ$, there is a subset $C'$ of the Magidor club such that $V[A]=V[C']$. Also we classify all intermediate $ZFC$ transitive models $V\subseteq M\subseteq V[G]$.