论文标题
Cu掺杂的KCl折叠并展开的带结构以及通过DFT计算研究的光学特性
Cu-Doped KCl folded and unfolded band structure and optical properties studied by DFT calculations
论文作者
论文摘要
我们计算了掺杂Cu的KCl晶体的光学性质以及折叠和展开的带结构。该计算使用在第一原理密度功能理论框架内在ABINIT电子结构包中实现的平面波伪电势方法。从理论的角度来看,将CU取代为原始KCL晶体需要通过超级电池(SC)方法进行计算。该过程缩小了布里渊区,导致了难以解释的折叠式结构。解决此问题并深入了解乡土离子(CU+)对电子特性的影响;我们展开了SC KCl:Cu的频带结构,以直接与原始KCl原始细胞(PC)的带结构进行比较。为了了解Cu取代对光学吸收的影响,我们通过跨国公司的形式主义计算了KCl:Cu的介电函数的假想部分,并通过部分制作选定价和传统带的迭代累积总和(ICS),将其分解为不同的频段贡献。结果,我们确定了由于Cu离子引起的吸收峰的那些频带间跃迁。这些过渡包括由CU-3D和CU-4S电子状态形成的价和传统带。为了研究掺杂位置的影响,我们考虑了不同的掺杂位置,其中Cu掺杂剂占据了所有取代宿主K阳离子的替代位点。我们的结果表明,掺杂位置的效应在几何结构中产生了两个八面体形状。与完美的八面体平方双锥体几何形状相比,扭曲的扭曲的扭曲的八面体平方双锥形几何形状会引起晶体场分裂能的差异。
We computed the optical properties and the folded and unfolded band structure of Cu-doped KCl crystals. The calculations use the plane-wave pseudo-potential approach implemented in the ABINIT electronic structure package within the first-principles density-functional theory framework. Cu substitution into pristine KCl crystals requires calculation by the supercell (SC) method from a theoretical perspective. This procedure shrinks the Brillouin zone, resulting in a folded band structure that is difficult to interpret. To solve this problem and gain insight into the effect of cuprous ion (Cu+) on electronic properties; We unfolded the band structure of SC KCl:Cu to directly compare with the band structure of the primitive cell (PC) of pristine KCl. To understand the effect of Cu substitution on optical absorption, we calculated the imaginary part of the dielectric function of KCl:Cu through a sum-over-states formalism and broke it down into different band contributions by partially making an iterated cumulative sum (ICS) of selected valence and conduction bands. As a result, we identified those interband transitions that give rise to the absorption peaks due to the Cu ion. These transitions include valence and conduction bands formed by the Cu-3d and Cu-4s electronic states. To investigate the effects of doping position, we consider different doping positions, where the Cu dopant occupies all the substitutional sites replacing host K cations. Our results indicate that the doping position's effects give rise to two octahedral shapes in the geometric structure. The distorted-twisted octahedral square bipyramidal geometric-shape induces a difference in the crystal field splitting energy compared to that of the perfect octahedral square bipyramidal geometric-shape.