论文标题

另一个看Hofer-Zehnder的猜想

Another look at the Hofer-Zehnder conjecture

论文作者

Cineli, Erman, Ginzburg, Viktor L., Gurel, Basak Z.

论文摘要

我们给出了不同和简单的证明,证明了最近的Shelukhin定理略微修改(较弱)的变体,该定理扩展了Franks的“两或绝对模样的定理”定理,以在更高的维度中对Hamiltonian的差异性进行,并确定了Hofer-zehnder猜想的足够一般情况。我们证明的一些成分与Shelukhin的原始论点很常见,其关键是Seidel的Epivariant Pair-Pants产品,但新的证明突出了汉密尔顿二型差异性的周期性轨道动力学的不同方面。

We give a different and simpler proof of a slightly modified (and weaker) variant of a recent theorem of Shelukhin extending Franks' "two-or-infinitely-many" theorem to Hamiltonian diffeomorphisms in higher dimensions and establishing a sufficiently general case of the Hofer-Zehnder conjecture. A few ingredients of our proof are common with Shelukhin's original argument, the key of which is Seidel's equivariant pair-of-pants product, but the new proof highlights a different aspect of the periodic orbit dynamics of Hamiltonian diffeomorphisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源