论文标题

非中心金属的动力极化和等离子体

Dynamical polarization and plasmons in noncentrosymmetric metals

论文作者

Verma, Sonu, Kundu, Arijit, Ghosh, Tarun Kanti

论文摘要

我们研究了自旋轨道耦合非中心金属(NCMS)的动力极化函数和等离子体模式。这些系统具有不同的费米表面拓扑,用于自旋变性点上方和下方的费米能,这也称为带触点(BTP)。我们从数值上计算精确的动态极化函数,并在长波长极限中提供其分析表达。我们在随机相近似的框架内获得血浆分散。在NCMS中,用于消失的激发波形之间的内部和边界间颗粒连续体(PHC)之间存在有限的能量差距。在长波长极限中,频带间PHC的宽度在BTP以下和上方的费米能量方面的行为不同,这是费米表面拓扑变化的明确特征。我们发现在BTP上方和下方的费米能量中,位于内部和带中PHC之间的单个未阻尼的光学等离子体模式。 BTP以下的等离子模式的速度小于BTP上方的速度。有趣的是,当我们调整BTP周围的费米能量时,等离子体模式会在E-E相互作用强度的范围内减弱。对于BTP上方和下方的费米能量,我们还获得了等离子体频率和等离子体分散的近似分析结果,等离子体分散良好,它们与其数值在长波长极限下的数值很好。等离子分散剂是$ \ propto q^2 $,$ q $是长波长限制的等离激元激发的波矢量。我们发现,尽管固定的E-E相互作用强度改变载体密度,反之亦然,但没有阻尼等离子模式的数量,尽管对这些参数的某些值的值可能会更大。我们通过计算可以在实验中测量的损耗函数和光导率来证明我们的结果。

We study the dynamical polarization function and plasmon modes for spin-orbit coupled noncentrosymmetric metals (NCMs). These systems have different Fermi surface topology for Fermi energies above and below the spin degenerate point which is also known as the band touching point (BTP). We calculate the exact dynamical polarization function numerically and also provide its analytical expression in the long wavelength limit. We obtain the plasmon dispersion within the framework of random phase approximation. In NCMs, there is a finite energy gap in between intra and interband particle hole continuum (PHC) for vanishing excitation wavevector. In the long wavelength limit, the width of interband PHC behaves differently for Fermi energies below and above the BTP as a clear signature of the Fermi surface topology change. We find a single undamped optical plasmon mode lying in between the intra and interband PHC for Fermi energies above and below the BTP. The plasmon mode below the BTP has smaller velocity than that of above the BTP. It is interesting to find that as we tune the Fermi energy around the BTP, the plasmon mode becomes damped within a range of e-e interaction strength. For Fermi energies above and below the BTP, we also obtain an approximate analytical result of plasma frequency and plasmon dispersion which match well with their numerical counterparts in the long wavelength limit. The plasmon dispersion is $\propto q^2$ with $q$ being the wave vector for plasmon excitation in the long wavelength limit. We find that varying the carrier density with fixed e-e interaction strength or vice versa does not change the number of undamped plasmon mode, although damped plasmon modes can be more in number for some values of these parameters. We demonstrate our results by calculating the loss function and optical conductivity which can be measured in experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源