论文标题

通过陶氏氧化和粪便厚度控制Ta/fecob/taox Trilayers中天空手性的控制

Control of skyrmion chirality in Ta/FeCoB/TaOx trilayers by TaOx oxidation and FeCoB thickness

论文作者

Kumar, Raj, Fillion, Charles-Elie, Lovery, Bertrand, Mokhtari, Ibtissem Benguettat-El, Joumard, Isabelle, Auffret, Stéphane, Ranno, Laurent, Roussigné, Yves, Chérif, Salim-Mourad, Stashkevich, Andrey, Belmeguenai, Mohamed, Baraduc, Claire, Béa, Hélène

论文摘要

天空是具有非平凡拓扑的磁性气泡,作为超快速和强力旋转记忆和逻辑设备的数据位。它们可以在重金属/铁磁/氧化物三层系统中稳定。然后通过界面dzyaloshinskii-moriya相互作用(DMI)的符号确定天空手性。然而,对于显然相同的系统,关于DMI符号存在一些争议。在这里,我们表明顶部界面的氧化程度和铁磁层的厚度起着主要作用。使用Brillouin光散射测量值,在TA/Fe-CO-B/Taox Trilayers中,我们证明了DMI的符号变化,并具有Fe-Co-B/Taox界面的氧化程度。使用极性磁光kerr效应显微镜,我们始终观察到具有陶氏的氧化水平的流动诱导运动方向的逆转。这归因于他们的手性逆转。另外,在改变Fe-CO-B厚度时,观察到第二种手性逆转,这可能是由于超薄案例中两个Fe-CO-B界面的接近性。通过正确调整天空的手性,自旋转移和自旋轨道扭矩结合起来,以增强天际速度。因此,这些观察结果使我们能够设想材料参数的优化,以产生高度移动的天空。此外,这种手性控制可以实现对天空的多功能操纵,并为多向设备铺平了道路。

Skyrmions are magnetic bubbles with nontrivial topology envisioned as data bits for ultrafast and power-efficient spintronic memory and logic devices. They may be stabilized in heavy-metal/ferromagnetic/oxide trilayer systems. The skyrmion chirality is then determined by the sign of the interfacial Dzyaloshinskii-Moriya interaction (DMI). Nevertheless, for apparently identical systems, there is some controversy about the DMI sign. Here, we show that the degree of oxidation of the top interface and the thickness of the ferromagnetic layer play a major role. Using Brillouin light-scattering measurements in Ta/Fe-Co-B/TaOx trilayers, we demonstrate a sign change of the DMI with the degree of oxidation of the Fe-Co-B/TaOx interface. Using polar magneto-optical Kerr effect microscopy, we consistently observe a reversal of the direction of current-induced motion of skyrmions with the oxidation level of TaOx; this is attributed to their chirality reversal. In addition, a second chirality reversal is observed when changing the Fe-Co-B thickness, probably due to the proximity of the two Fe-Co-B interfaces in the ultrathin case. By properly tuning the chirality of the skyrmion, spin-transfer and spin-orbit torques combine constructively to enhance the skyrmion velocity. These observations thus allow us to envision an optimization of the material parameters to produce highly mobile skyrmions. Moreover, this chirality control enables a versatile manipulation of skyrmions and paves the way towards multidirectional devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源