论文标题

XMM-Newton中对软质子污染的预测和理解:一种机器学习方法

Prediction and understanding of soft proton contamination in XMM-Newton: a machine learning approach

论文作者

Kronberg, E. A., Gastaldello, F., Haaland, S., Smirnov, A., Berrendorf, M., Ghizzardi, S., Kuntz, K. D., Sivadas, N., Allen, R. C., Tiengo, A., Ilie, R., Huang, Y., Kistler, L.

论文摘要

当前一代X射线望远镜的主要且不可预见的背景来源之一是几十至数百至数百个由镜子集中的质子。这样的望远镜之一是欧洲航天局(ESA)X射线多麦尔龙任务(XMM-Newton)。由于背景污染而浪费的观察时间约为40 \%。观察时间的丧失影响了该天文台的所有主要广泛科学目标,从宇宙学到中子星和黑洞的天体物理学。软质子背景可能会极大地影响未来的大型X射线任务,例如ESA计划的雅典娜任务(http://www.the-athena-x-ray-observatory.eu/)。触发这种背景的物理过程仍然很少了解。我们使用机器学习(ML)方法来描述相关的重要参数,并开发模型,以使用12年的XMM观测值预测背景污染。作为预测因素,我们使用卫星,太阳能和地磁活动参数的位置。我们透露,污染与南部方向的距离最密切相关,$ z $(XMM观测值在南半球),太阳风径向速度以及磁层磁场线上的位置。我们为前两个单独的预测指标和ML模型得出了简单的经验模型,该模型利用了预测变量(额外的树回归器)的集合并提供更好的性能。基于我们的分析,未来的任务应最大程度地减少与高太阳风速相关的时间,并避免封闭的磁场线,尤其是在南半球的黄昏侧面区域。

One of the major and unfortunately unforeseen sources of background for the current generation of X-ray telescopes are few tens to hundreds of keV (soft) protons concentrated by the mirrors. One such telescope is the European Space Agency's (ESA) X-ray Multi-Mirror Mission (XMM-Newton). Its observing time lost due to background contamination is about 40\%. This loss of observing time affects all the major broad science goals of this observatory, ranging from cosmology to astrophysics of neutron stars and black holes. The soft proton background could dramatically impact future large X-ray missions such as the ESA planned Athena mission (http://www.the-athena-x-ray-observatory.eu/). Physical processes that trigger this background are still poorly understood. We use a Machine Learning (ML) approach to delineate related important parameters and to develop a model to predict the background contamination using 12 years of XMM observations. As predictors we use the location of satellite, solar and geomagnetic activity parameters. We revealed that the contamination is most strongly related to the distance in southern direction, $Z$, (XMM observations were in the southern hemisphere), the solar wind radial velocity and the location on the magnetospheric magnetic field lines. We derived simple empirical models for the first two individual predictors and an ML model which utilizes an ensemble of the predictors (Extra Trees Regressor) and gives better performance. Based on our analysis, future missions should minimize observations during times associated with high solar wind speed and avoid closed magnetic field lines, especially at the dusk flank region in the southern hemisphere.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源