论文标题

偏斜线性系统的量子古典算法,具有优化的Hadamard测试

Quantum-classical algorithms for skewed linear systems with optimized Hadamard test

论文作者

Wu, Bujiao, Ray, Maharshi, Zhao, Liming, Sun, Xiaoming, Rebentrost, Patrick

论文摘要

线性系统的求解提供了一个丰富的领域,以研究近期,嘈杂,中间量子计算机的使用。在这项工作中,我们讨论了用于过度确定和不确定情况的偏斜线性系统的混合量子古典算法。我们的输入模型是,定义线性系统的矩阵的列或行是通过多同源深度深度的量子电路给出的,并且电路的数量远小于其希尔伯特空间维度。我们的算法对其他自然量的维度和多项式依赖性具有多同源性的依赖性。此外,我们为在各个维度中具有运行时间多结构化的分解线性系统的特殊情况提供了一种算法。这些算法的核心是Hadamard测试,在本文的第二部分中,我们考虑了该测试的电路深度的优化。给定一个$ n $ -qubit和$ d $ -Deptth量子电路$ \ MATHCAL {C} $,我们可以使用$(N + S)$ Qubits和$ Qubits和$ o \ weft(\ log s + D \ log log(n/s)$ prock(n/s)$ prock( n $。相比之下,标准实施需要$ N+1 $ QUBITS和$ O(DN)$ DEPTH。晶格几何形状是最近使用超导装置进行的量子至上实验的基础。我们还为$(l_1 \ times l_2)$ lattice优化了Hadamard测试,其$ l_1 \ times l_2 = n $,并且可以大约$ \ langle 0 | \ mathcal {c} | 0 \ rangle $,带有$(n + 1)$ qubits $ qubits和$ o \ weft(d_ l_ p \ weft(l_1 l_1 + l_1 + l_1 + l_1 + l_1 + l_1 + l_1 + l_1)相比之下,在此设置中,标准深度为$ o \ left(d n^2 \右)$。在一项深度量子电路$ \ mathcal {c} $的情况下,我们的两种优化方法都是渐近的。

The solving of linear systems provides a rich area to investigate the use of nearer-term, noisy, intermediate-scale quantum computers. In this work, we discuss hybrid quantum-classical algorithms for skewed linear systems for over-determined and under-determined cases. Our input model is such that the columns or rows of the matrix defining the linear system are given via quantum circuits of poly-logarithmic depth and the number of circuits is much smaller than their Hilbert space dimension. Our algorithms have poly-logarithmic dependence on the dimension and polynomial dependence in other natural quantities. In addition, we present an algorithm for the special case of a factorized linear system with run time poly-logarithmic in the respective dimensions. At the core of these algorithms is the Hadamard test and in the second part of this paper we consider the optimization of the circuit depth of this test. Given an $n$-qubit and $d$-depth quantum circuit $\mathcal{C}$, we can approximate $\langle 0|\mathcal{C}|0\rangle$ using $(n + s)$ qubits and $O\left(\log s + d\log (n/s) + d\right)$-depth quantum circuits, where $s\leq n$. In comparison, the standard implementation requires $n+1$ qubits and $O(dn)$ depth. Lattice geometries underlie recent quantum supremacy experiments with superconducting devices. We also optimize the Hadamard test for an $(l_1\times l_2)$ lattice with $l_1 \times l_2 = n$, and can approximate $\langle 0|\mathcal{C} |0\rangle$ with $(n + 1)$ qubits and $O\left(d \left(l_1 + l_2\right)\right)$-depth circuits. In comparison, the standard depth is $O\left(d n^2\right)$ in this setting. Both of our optimization methods are asymptotically tight in the case of one-depth quantum circuits $\mathcal{C}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源