论文标题

学习类别和实例感知的像素嵌入,用于快速全盘细分

Learning Category- and Instance-Aware Pixel Embedding for Fast Panoptic Segmentation

论文作者

Gao, Naiyu, Shan, Yanhu, Zhao, Xin, Huang, Kaiqi

论文摘要

Panoptic分割(PS)是一个复杂的场景理解任务,需要为物体和物体区域提供高质量的分割。先前的方法分别使用语义和实例分割模块处理这两个类,然后使用启发式融合或其他模块来解决两个输出之间的冲突。这项工作通过使用新颖的PS框架对这两个类建模,从而简化了PS的管道,该框架扩展了一个具有额外模块的检测模型,以预测类别和实例感知的像素嵌入(CIAE)。 CIAE是一种新颖的像素嵌入功能,它既编码语义分类和实例触发信息。在推理过程中,通过根据学习的嵌入将每个像素分配给检测的实例或某种东西类,从而简单地得出PS结果。我们的方法不仅展示了快速推理速度,而且还展示了第一种单阶段的方法,即在具有挑战性的可可基准上实现与两阶段方法相当的性能。

Panoptic segmentation (PS) is a complex scene understanding task that requires providing high-quality segmentation for both thing objects and stuff regions. Previous methods handle these two classes with semantic and instance segmentation modules separately, following with heuristic fusion or additional modules to resolve the conflicts between the two outputs. This work simplifies this pipeline of PS by consistently modeling the two classes with a novel PS framework, which extends a detection model with an extra module to predict category- and instance-aware pixel embedding (CIAE). CIAE is a novel pixel-wise embedding feature that encodes both semantic-classification and instance-distinction information. At the inference process, PS results are simply derived by assigning each pixel to a detected instance or a stuff class according to the learned embedding. Our method not only demonstrates fast inference speed but also the first one-stage method to achieve comparable performance to two-stage methods on the challenging COCO benchmark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源