论文标题
绷紧,弯曲和teichmüller多项式的计算
Computation of the taut, the veering and the Teichmüller polynomials
论文作者
论文摘要
兰德里(Landry),明斯基(Minsky)和泰勒(LMT)引入了两种多项式三角形的多项式不变式 - 绷紧的多项式和多项式多项式。我们给出算法来计算这些不变性。在其定义中,[LMT]仅使用弯曲三角剖分的上部轨道,而我们同时考虑上部和下部轨道。我们证明下部和上缩的多项式相等。但是,我们表明有一些转向的三角形,其上层和上流多项式不同。 [LMT]将Thurston Norm Ball的纤维面的Teichmüller多项式与相关的分层旋转三角剖分的绷紧多项式有关。我们使用此结果给出一种算法来计算瑟斯顿标准球的任何纤维面的Teichmüller多项式。
Landry, Minsky and Taylor [LMT] introduced two polynomial invariants of veering triangulations -- the taut polynomial and the veering polynomial. We give algorithms to compute these invariants. In their definition [LMT] use only the upper track of the veering triangulation, while we consider both the upper and the lower track. We prove that the lower and the upper taut polynomials are equal. However, we show that there are veering triangulations whose lower and upper veering polynomials are different. [LMT] related the Teichmüller polynomial of a fibred face of the Thurston norm ball with the taut polynomial of the associated layered veering triangulation. We use this result to give an algorithm to compute the Teichmüller polynomial of any fibred face of the Thurston norm ball.