论文标题

任意风电场几何的分析平均流量预测的局部耦合模型

The Area Localized Coupled Model for Analytical Mean Flow Prediction in Arbitrary Wind Farm Geometries

论文作者

Starke, Genevieve M., Meneveau, Charles, King, Jennifer R., Gayme, Dennice F.

论文摘要

这项工作介绍了局部耦合(ALC)模型的区域,该模型扩展了较早的方法来耦合经典的唤醒叠加和大气边界层模型,以便适用于任意风向的布局。耦合唤醒和自上而下的边界层模型尤其具有挑战性,因为后者需要平均与某些与某些涡轮特定区域相关的平面面积。 ALC模型使用Voronoi Tesselation来定义每个涡轮机周围的局部区域。然后,对发展内部边界层的自上而下描述将在每个涡轮机上游的Voronoi细胞上应用,以估计局部平均速度曲线。基于此局部自上而下模型的集线器高度速度与唤醒模型之间的耦合是通过在每个单元格中实现最小平方率的最小平方错误来实现的。使用具有轮廓的唤醒模型实现了ALC模型,该模型将从顶帽转变为高斯功能,并通过线性叠加来解释尾流相互作用。与大型模拟(LES)数据的详细比较证明了该模型对复杂风电场几何形状的功率和集线器高速度的准确预测的功效。通过LES的进一步验证了一个混合阵列随机农场,该农场的一半涡轮机在阵列中排列,而另一半随机分布,这表明该模型的多功能性在捕获不同风电场配置的结果方面。在这两种情况下,ALC模型均显示出对农场和单个涡轮机的功率预测,而不是一系列风流方向的流行方法。

This work introduces the Area Localized Coupled (ALC) model, which extends earlier approaches to coupling classical wake superposition and atmospheric boundary layer models in order to enable applicability to arbitrary wind-farm layouts. Coupling wake and top-down boundary layer models is particularly challenging since the latter requires averaging over planform areas associated with certain turbine-specific regions of the flow. The ALC model uses Voronoi tesselation to define a local area around each turbine. A top-down description of a developing internal boundary layers is then applied over Voronoi cells upstream of each turbine to estimate the local mean velocity profile. Coupling between the velocity at hub-height based on this localized top-down model and a wake model is achieved by enforcing a minimum least-square-error in mean velocity in each cell. The ALC model is implemented using a wake model with a profile that transitions from a top-hat to Gaussian function and accounts for wake interactions through linear superposition. Detailed comparisons to large-eddy simulation (LES) data demonstrate the efficacy of the model in accurate predictions of both power and hub height velocity for complex wind farm geometries. Further validation with LES for a hybrid array-random farm that has half of the turbines arranged in an array and the other half randomly distributed indicates the model's versatility with respect to capturing results from different wind farm configurations. In both cases, the ALC model is shown to produce improved power predictions for both the farm and individual turbines over prevailing approaches for a range of wind inflow directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源