论文标题
合奏Kalman滤波器,用于具有联合物理和网格位置更新的非保守移动网格求解器
Ensemble Kalman Filter for non-conservative moving mesh solvers with a joint physics and mesh location update
论文作者
论文摘要
使用自适应网格的数值求解器可以将计算能力集中在模型域的重要区域上,以捕获重要或未解决的物理。适应性可以通过模型状态,外部信息或依赖模型物理学来告知。在后一种情况下,人们可以将网格配置{\ it作为模型状态}的一部分。如果要将观察数据吸收到模型中,则会出现与物理值更新网格配置的问题。自适应网格在使用流行的集合数据同化(DA)方法时会面临重大挑战。我们为基于整体的DA制定了一种新颖的策略,并将自适应网格与物理值一起更新。这涉及将节点位置作为模型状态本身的一部分,允许在分析步骤中自动更新它们。这构成了许多挑战,我们决心产生一种有望在某种程度上应用的有效方法。我们使用两个测试台模型在1D中评估了我们的策略,该策略与未更新网格配置的策略相比。我们发现更新网格可以提高过滤器的忠诚度和收敛性。
Numerical solvers using adaptive meshes can focus computational power on important regions of a model domain capturing important or unresolved physics. The adaptation can be informed by the model state, external information, or made to depend on the model physics. In this latter case, one can think of the mesh configuration {\it as part of the model state}. If observational data is to be assimilated into the model, the question of updating the mesh configuration with the physical values arises. Adaptive meshes present significant challenges when using popular ensemble Data Assimilation (DA) methods. We develop a novel strategy for ensemble-based DA for which the adaptive mesh is updated along with the physical values. This involves including the node locations as a part of the model state itself allowing them to be updated automatically at the analysis step. This poses a number of challenges which we resolve to produce an effective approach that promises to apply with some generality. We evaluate our strategy with two testbed models in 1-d comparing to a strategy that does not update the mesh configuration. We find updating the mesh improves the fidelity and convergence of the filter.