论文标题
通过跨注意的监督数据扩展来回答的问题回答的神经检索
Neural Retrieval for Question Answering with Cross-Attention Supervised Data Augmentation
论文作者
论文摘要
独立将问题和答案投射到共享嵌入空间的神经模型可以从大型语料库中有效地检索有效的持续空间。独立计算问题和答案的嵌入会导致与匹配问题相关的信息与答案相关的信息。虽然对于有效的检索至关重要,但晚期融合表现不佳的模型,这些模型使用早期融合(例如,基于BERT的分类器,在问答对之间具有交叉注意力)。我们使用准确的早期融合模型提出了一种监督的数据挖掘方法,以改善有效的晚期融合检索模型的训练。我们首先训练一个准确的分类模型,并在问题和答案之间进行跨注意。然后,将准确的跨注意模型用于注释其他段落,以生成神经检索模型的加权训练示例。带有其他数据的结果检索模型显着胜过直接训练精度为$ n $(p@n)和平均值等级(MRR)的金色注释的检索模型。
Neural models that independently project questions and answers into a shared embedding space allow for efficient continuous space retrieval from large corpora. Independently computing embeddings for questions and answers results in late fusion of information related to matching questions to their answers. While critical for efficient retrieval, late fusion underperforms models that make use of early fusion (e.g., a BERT based classifier with cross-attention between question-answer pairs). We present a supervised data mining method using an accurate early fusion model to improve the training of an efficient late fusion retrieval model. We first train an accurate classification model with cross-attention between questions and answers. The accurate cross-attention model is then used to annotate additional passages in order to generate weighted training examples for a neural retrieval model. The resulting retrieval model with additional data significantly outperforms retrieval models directly trained with gold annotations on Precision at $N$ (P@N) and Mean Reciprocal Rank (MRR).