论文标题
MCW-NET:具有多级连接和广泛的区域非本地块的单图像
MCW-Net: Single Image Deraining with Multi-level Connections and Wide Regional Non-local Blocks
论文作者
论文摘要
最近的一系列卷积神经网络的作品成功地捕捉了雨条。但是,详细恢复的困难仍然存在。在本文中,我们提出了多层连接和广泛的区域非本地块网络(MCW-NET),以正确恢复雨水图像中的原始背景纹理。与现有的基于编码器 - 模型的图像模型不同,可以通过其他分支提高性能,而MCW-NET通过通过以下两种建议的方法在没有其他分支的情况下通过最大化信息利用来提高性能。第一个方法是多层连接,该连接将编码器网络的多级功能与解码器网络连接起来。多层连接鼓励使用所有级别的特征信息的解码过程。在多级连接中,考虑到渠道的关注来了解哪种特征在当前级别的解码过程中很重要。第二种方法是广泛的区域非本地块。当雨条的主要表现出垂直分布时,我们将图像的网格分为水平范围的斑块,并将非本地操作应用于每个区域,以探索丰富的无雨背景信息。合成和现实世界中的雨数据集的实验结果表明,所提出的模型显着胜过现有的最新模型。此外,关节扩展和分割实验的结果证明了我们的模型有效地有助于其他视觉任务。
A recent line of convolutional neural network-based works has succeeded in capturing rain streaks. However, difficulties in detailed recovery still remain. In this paper, we present a multi-level connection and wide regional non-local block network (MCW-Net) to properly restore the original background textures in rainy images. Unlike existing encoder-decoder-based image deraining models that improve performance with additional branches, MCW-Net improves performance by maximizing information utilization without additional branches through the following two proposed methods. The first method is a multi-level connection that repeatedly connects multi-level features of the encoder network to the decoder network. Multi-level connection encourages the decoding process to use the feature information of all levels. In multi-level connection, channel-wise attention is considered to learn which level of features is important in the decoding process of the current level. The second method is a wide regional non-local block. As rain streaks primarily exhibit a vertical distribution, we divide the grid of the image into horizontally-wide patches and apply a non-local operation to each region to explore the rich rain-free background information. Experimental results on both synthetic and real-world rainy datasets demonstrate that the proposed model significantly outperforms existing state-of-the-art models. Furthermore, the results of the joint deraining and segmentation experiment prove that our model contributes effectively to other vision tasks.