论文标题
识别和在线更新动态模型,以响应工业空气分离单元的需求响应
Identification and online updating of dynamic models for demand response of an industrial air separation unit
论文作者
论文摘要
空气分离单元的需求响应操作需要经常改变生产率,调度计算必须明确考虑过程动态以确保解决方案的可行性。为此,比例模型(SBMS)近似在低阶表示中近似过程及其控制器的调度相关动力学。与以前使用非线性SBM的工作相反,本文提出了使用时间序列分析开发的线性SBM,以促进在线调度计算。使用长达一年的工业数据集,我们发现紧凑的线性SBM在典型的调度范围中是合适的近似值,但是随着时间的推移,它们的准确性是无法预测的。我们介绍了基于Kalman过滤方案的在线参数估计的策略,用于在线更新SBM。该方法大大提高了SBM预测的准确性,并将在将来使用基于线性SBM的需求响应调度。
Demand-response operation of air separation units requires frequent changes in production rate(s), and scheduling calculations must explicitly consider process dynamics to ensure feasibility of the solutions. To this end, scale-bridging models (SBMs) approximate the scheduling-relevant dynamics of a process and its controller in a low-order representation. In contrast to previous works that have employed nonlinear SBMs, this paper proposes linear SBMs, developed using time-series analysis, to facilitate online scheduling computations. Using a year-long industrial dataset, we find that compact linear SBMs are suitable approximations over typical scheduling horizons, but that their accuracies are unpredictable over time. We introduce a strategy for online updating of the SBMs, based on Kalman filtering schemes for online parameter estimation. The approach greatly improves the accuracy of SBM predictions and will enable the use of linear SBM-based demand-response scheduling in the future.