论文标题

通过多个实例学习和基于梯度的解释,改善整个幻灯片成像的计算机辅助诊断工具的可解释性

Improving Interpretability for Computer-aided Diagnosis tools on Whole Slide Imaging with Multiple Instance Learning and Gradient-based Explanations

论文作者

Pirovano, Antoine, Heuberger, Hippolyte, Berlemont, Sylvain, Ladjal, Saïd, Bloch, Isabelle

论文摘要

深度学习方法被广泛用于医疗应用,以帮助医生日常工作。尽管表演达到了专家的水平,但解释性(突出了如何学习的模型以及为什么要做出特定决定)是深度学习方法需要回答以完全集成在医学领域的下一个重要挑战。在本文中,我们在整个幻灯片图像(WSI)分类的上下文中解决了可解释性问题。我们将WSI分类体系结构的设计形式化,并提出了一种依赖基于梯度的方法,功能可视化和多个实例学习上下文的零件解释性方法。我们的目的是根据图块级别的评分,如何确定这些瓷砖分数以及使用哪些功能并与任务相关,以解释如何做出决策。在训练了Camelyon-16 WSI数据集上的两个WSI分类体系结构之后,突出了学到的歧视性特征,并通过病理学家验证了我们的方法,我们提出了一种基于提取的特征来计算可解释性幻灯片级热图的新型方式,从而将瓷砖级别的分类性能提高了29%以上。

Deep learning methods are widely used for medical applications to assist medical doctors in their daily routines. While performances reach expert's level, interpretability (highlight how and what a trained model learned and why it makes a specific decision) is the next important challenge that deep learning methods need to answer to be fully integrated in the medical field. In this paper, we address the question of interpretability in the context of whole slide images (WSI) classification. We formalize the design of WSI classification architectures and propose a piece-wise interpretability approach, relying on gradient-based methods, feature visualization and multiple instance learning context. We aim at explaining how the decision is made based on tile level scoring, how these tile scores are decided and which features are used and relevant for the task. After training two WSI classification architectures on Camelyon-16 WSI dataset, highlighting discriminative features learned, and validating our approach with pathologists, we propose a novel manner of computing interpretability slide-level heat-maps, based on the extracted features, that improves tile-level classification performances by more than 29% for AUC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源