论文标题

超组,Q系列和3个manifolds

Supergroups, q-series and 3-manifolds

论文作者

Ferrari, Francesca, Putrov, Pavel

论文摘要

我们介绍了3个manifold不变性$ \ hat {z} $的超组类似物,也称为同源块,以前是普通紧凑型半充实的谎言组。我们专注于超级群体,并详细说明SU(2 | 1)的情况。从物理上讲,这些不变的人被实现为与五脑相交的五脑系统的BPS状态的索引。与原始情况一样,同源块是具有整数系数的Q系列。我们提供了一种明确的算法来计算一类钢管的3个manifolds的这些Q系,并研究了一些特定的3个杂志的量子模块和重新外观。最后,我们猜想了一个公式,该公式将$ \ hat {z} $不变式和量子不变式构建,该量子是由量子超级组的未经版本的非避免类别构建的。

We introduce supergroup analogues of 3-manifold invariants $\hat{Z}$, also known as homological blocks, which were previously considered for ordinary compact semisimple Lie groups. We focus on superunitary groups, and work out the case of SU(2|1) in details. Physically these invariants are realized as the index of BPS states of a system of intersecting fivebranes wrapping a 3-manifold in M-theory. As in the original case, the homological blocks are q-series with integer coefficients. We provide an explicit algorithm to calculate these q-series for a class of plumbed 3-manifolds and study quantum modularity and resurgence properties for some particular 3-manifolds. Finally, we conjecture a formula relating the $\hat{Z}$ invariants and the quantum invariants constructed from a non-semisimple category of representation of the unrolled version of a quantum supergroup.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源