论文标题

全频GW没有频率

Full-Frequency GW without Frequency

论文作者

Bintrim, Sylvia J., Berkelbach, Timothy C.

论文摘要

GW近似的有效计算机实现必须近似于数值具有挑战性的频率积分;可以通过分析执行积分,但是这样做会导致昂贵的实现,其计算成本量表为$ O(n^6)$,其中$ n $是系统的大小。在这里,我们通过将其作为在扩展的空间中的特征值问题精确地重新铸造,从而介绍了全频GW近似的新公式。这种新的配方(1)避免使用时间或频率网格,(2)自然排除了常见的“对角线”近似值,(3)使常见的迭代特征层可将规范缩放缩放到$ O(n^5)$,并且(4)实现了缩小缩放量表的密度(n^5)$(n^5)$(n^4)$(n^4^4^4^4)。我们从数值上验证这些缩放行为,并测试由这种新公式动机的各种近似值。在这种新的公式中,GW近似与构型相互作用,耦合群集理论和代数图解结构的关系特别明显,为改进GW近似的新方向提供了新的方向。

Efficient computer implementations of the GW approximation must approximate a numerically challenging frequency integral; the integral can be performed analytically, but doing so leads to an expensive implementation whose computational cost scales as $O(N^6)$ where $N$ is the size of the system. Here we introduce a new formulation of the full-frequency GW approximation by exactly recasting it as an eigenvalue problem in an expanded space. This new formulation (1) avoids the use of time or frequency grids, (2) naturally precludes the common "diagonal" approximation, (3) enables common iterative eigensolvers that reduce the canonical scaling to $O(N^5)$, and (4) enables a density-fitted implementation that reduces the scaling to $O(N^4)$. We numerically verify these scaling behaviors and test a variety of approximations that are motivated by this new formulation. In this new formulation, the relation of the GW approximation to configuration interaction, coupled-cluster theory, and the algebraic diagrammatic construction is made especially apparent, providing a new direction for improvements to the GW approximation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源