论文标题
人群计数的不确定性估计和样本选择
Uncertainty Estimation and Sample Selection for Crowd Counting
论文作者
论文摘要
我们提出了一种基于图像的人群计数的方法,该方法可以预测人群密度图以及与预测密度图有关的不确定性值。为了获得预测不确定性,我们使用高斯分布对人群密度值进行建模,并开发卷积神经网络体系结构以预测这些分布。我们方法比现有人群计数方法的关键优势是量化预测的不确定性的能力。我们通过开发一种方法来减少将计数网络适应新领域所需的人类注释工作的方法来说明了解预测不确定性的好处。我们提出了样本选择策略,这些策略利用了在一个领域训练的网络的密度和不确定性,以从感兴趣的目标域中选择信息图像以获取人类注释。我们表明,我们的样本选择策略大大减少了从源域上训练的计数网络所需的目标域中的标记数据量,从而将其标记为目标域。从经验上讲,在UCF-QNRF数据集中训练的网络可以适应NWPU数据集和Shanghaitech数据集上先前最先进的结果的性能,仅使用目标域中的标记培训样本的17美元。
We present a method for image-based crowd counting, one that can predict a crowd density map together with the uncertainty values pertaining to the predicted density map. To obtain prediction uncertainty, we model the crowd density values using Gaussian distributions and develop a convolutional neural network architecture to predict these distributions. A key advantage of our method over existing crowd counting methods is its ability to quantify the uncertainty of its predictions. We illustrate the benefits of knowing the prediction uncertainty by developing a method to reduce the human annotation effort needed to adapt counting networks to a new domain. We present sample selection strategies which make use of the density and uncertainty of predictions from the networks trained on one domain to select the informative images from a target domain of interest to acquire human annotation. We show that our sample selection strategy drastically reduces the amount of labeled data from the target domain needed to adapt a counting network trained on a source domain to the target domain. Empirically, the networks trained on UCF-QNRF dataset can be adapted to surpass the performance of the previous state-of-the-art results on NWPU dataset and Shanghaitech dataset using only 17$\%$ of the labeled training samples from the target domain.