论文标题
纳米级的室温多层神经突触,用于深尖峰神经网络
A Nanoscale Room-Temperature Multilayer Skyrmionic Synapse for Deep Spiking Neural Networks
论文作者
论文摘要
磁性天际引起了很大的兴趣,尤其是在他们最近在室温下进行多层实验演示之后。天空源的稳健性,纳米级的大小和不挥发性引发了大量基于天际的低功率,超密集的纳米计算和神经形态系统(如人工突触)的研究。需要室温操作来整合实际的将来设备中的Skyrmionic突触。在这里,我们从数字上提出了由由磁性多层组成的纳米级短暂突触,该突触启用了室温设备的操作,该操作是为最佳突触分辨率量身定制的。我们证明,当通过峰值依赖性的可塑性规则中,将这种多层天空突触嵌入简单的尖峰神经网络(SNN)中,而无监督的学习,我们只能在现实情况下仅实现MNIST手写数据集的78%的分类精度。我们建议,通过使用带有监督学习的深层SNN,可以将这种表现显着提高到98.61%。我们的结果表明,提出的Skyrmionic Synapse可能是未来能节能神经形态边缘计算的潜在候选者。
Magnetic skyrmions have attracted considerable interest, especially after their recent experimental demonstration at room temperature in multilayers. The robustness, nanoscale size and non-volatility of skyrmions have triggered a substantial amount of research on skyrmion-based low-power, ultra-dense nanocomputing and neuromorphic systems such as artificial synapses. Room-temperature operation is required to integrate skyrmionic synapses in practical future devices. Here, we numerically propose a nanoscale skyrmionic synapse composed of magnetic multilayers that enables room-temperature device operation tailored for optimal synaptic resolution. We demonstrate that when embedding such multilayer skyrmionic synapses in a simple spiking neural network (SNN) with unsupervised learning via the spike-timing-dependent plasticity rule, we can achieve only a 78% classification accuracy in the MNIST handwritten data set under realistic conditions. We propose that this performance can be significantly improved to about 98.61% by using a deep SNN with supervised learning. Our results illustrate that the proposed skyrmionic synapse can be a potential candidate for future energy-efficient neuromorphic edge computing.