论文标题
通过生成模仿学习在室内场景中朝目标驱动的视觉导航
Towards Target-Driven Visual Navigation in Indoor Scenes via Generative Imitation Learning
论文作者
论文摘要
我们提出了一个目标驱动的导航系统,以改善室内场景中的无MAP视觉导航。我们的方法对机器人和目标进行多视图观察,作为在每个时间步骤的输入,以提供一系列动作,这些操作将机器人移动到目标,而无需在运行时依赖探测器或GPS。通过优化包含三个关键设计的组合目标来学习系统。首先,我们建议代理在做出行动决定之前对下一个观察进行想法。这是通过从专家演示中学习变异生成模块来实现的。然后,我们提出预测静态碰撞,这是一项辅助任务,以提高导航期间的安全性。此外,为了减轻培训数据失衡的终止行动预测问题,我们还引入了一个目标检查模块,以通过终止措施与增强导航策略区分开。提出的三种设计都有助于提高训练数据效率,避免静态碰撞和导航概括性能,从而导致了新型目标驱动的无MAP导航系统。通过对海龟机器人的实验,我们提供了证据,表明我们的模型可以集成到机器人系统中并在现实世界中导航。视频和模型可以在补充材料中找到。
We present a target-driven navigation system to improve mapless visual navigation in indoor scenes. Our method takes a multi-view observation of a robot and a target as inputs at each time step to provide a sequence of actions that move the robot to the target without relying on odometry or GPS at runtime. The system is learned by optimizing a combinational objective encompassing three key designs. First, we propose that an agent conceives the next observation before making an action decision. This is achieved by learning a variational generative module from expert demonstrations. We then propose predicting static collision in advance, as an auxiliary task to improve safety during navigation. Moreover, to alleviate the training data imbalance problem of termination action prediction, we also introduce a target checking module to differentiate from augmenting navigation policy with a termination action. The three proposed designs all contribute to the improved training data efficiency, static collision avoidance, and navigation generalization performance, resulting in a novel target-driven mapless navigation system. Through experiments on a TurtleBot, we provide evidence that our model can be integrated into a robotic system and navigate in the real world. Videos and models can be found in the supplementary material.