论文标题
使用人工神经网络检测光瞬变和来自不同调查的参考图像
Detecting optical transients using artificial neural networks and reference images from different surveys
论文作者
论文摘要
为了搜索与重力波的光学对应物,开发一种有效的后续方法至关重要,该方法既可以允许对事件定位区域进行快速的伸缩扫描,并浏览所得图像数据以获取合理的光学瞬变。我们提出了一种基于人工神经网络检测这些瞬变的方法。我们描述了两个网络的架构,能够比较不同望远镜拍摄的天空同一部分的图像。一个图像对应于可能存在潜在瞬态的时期。另一个是早期时期的参考图像。我们使用克里斯蒂娜·托雷斯(Cristina V.我们在模拟的源样本上训练了卷积神经网络和密集的层网络,并对从真实图像数据创建的样本进行了训练的网络。自主检测方法取代了检测瞬变的标准过程,这通常是通过源提取差异图像来实现的,然后是人类检查被检测到的候选物的。用完全自主的方法代替人类检查组件将允许对有趣的机会进行快速自动的随访。该方法将在参与南方协作的瞬态光机器人观测站的望远镜上进一步测试。
To search for optical counterparts to gravitational waves, it is crucial to develop an efficient follow-up method that allows for both a quick telescopic scan of the event localization region and search through the resulting image data for plausible optical transients. We present a method to detect these transients based on an artificial neural network. We describe the architecture of two networks capable of comparing images of the same part of the sky taken by different telescopes. One image corresponds to the epoch in which a potential transient could exist; the other is a reference image of an earlier epoch. We use data obtained by the Dr. Cristina V. Torres Memorial Astronomical Observatory and archival reference images from the Sloan Digital Sky Survey. We trained a convolutional neural network and a dense layer network on simulated source samples and tested the trained networks on samples created from real image data. Autonomous detection methods replace the standard process of detecting transients, which is normally achieved by source extraction of a difference image followed by human inspection of the detected candidates. Replacing the human inspection component with an entirely autonomous method would allow for a rapid and automatic follow-up of interesting targets of opportunity. The method will be further tested on telescopes participating in the Transient Optical Robotic Observatory of the South Collaboration.