论文标题
自洽的核心欧洲运输模拟器ETS中的失控电子建模
Runaway electron modelling in the self-consistent core European Transport Simulator, ETS
论文作者
论文摘要
相对论的失控电子是Tokamaks的主要问题。欧洲集成建模的框架(EU-IM)通过为通信提供标准数据结构来促进不同等离子体模拟工具的集成,从而使不同的物理代码相对容易地集成。在欧盟IM内的失控电子模拟采用了三级建模方法。最近,许多失控的电子建模模块已集成到该框架中。建模的第一级(失控指示器)仅限于指示,是否可能或可能产生失控的电子。第二级(失控的流体)采用了类似于例如GO代码,使用分析公式来估计失控电子电流密度的变化。第三级基于电子动力学的溶液。一个这样的代码就是卢克,可以通过求解弹跳平均的fokker-planck方程来处理环形性诱导的效果。在北欧地区使用了另一种方法,该方法具有完全非线性碰撞算子,该操作员能够模拟电子分布的重大变化,例如滑动。这两个代码都处理辐射对失控分布的影响。这些失控的电子建模代码处于集成到EU-IM基础架构以及欧洲运输模拟器(ETS)的不同阶段,该模拟器是一种完全有能力的模块化1.5D核心传输模拟器。 ETS具有失控流体的ETS根据实现类似物理的GO代码进行了基准测试。动力学求解器的相干整合需要在耦合上进行更多的努力,尤其是在失控和热种群之间的边界的定义以及电阻率的一致计算上。讨论了其中一些问题。
Relativistic runaway electrons are a major concern in tokamaks. The European framework for Integrated Modelling (EU-IM), facilitates the integration of different plasma simulation tools by providing a standard data structure for communication that enables relatively easy integration of different physics codes. A three-level modelling approach was adopted for runaway electron simulations within the EU-IM. Recently, a number of runaway electron modelling modules have been integrated into this framework. The first level of modelling (Runaway Indicator) is limited to the indication if runaway electron generation is possible or likely. The second level (Runaway Fluid) adopts an approach similar to e.g. the GO code, using analytical formulas to estimate changes in the runaway electron current density. The third level is based on the solution of the electron kinetics. One such code is LUKE that can handle the toroidicity-induced effects by solving the bounce-averaged Fokker-Planck equation. Another approach is used in NORSE, which features a fully nonlinear collision operator that makes it capable of simulating major changes in the electron distribution, for example slide-away. Both codes handle the effect of radiation on the runaway distribution. These runaway-electron modelling codes are in different stages of integration into the EU-IM infrastructure, and into the European Transport Simulator (ETS), which is a fully capable modular 1.5D core transport simulator. ETS with Runaway Fluid was benchmarked to the GO code implementing similar physics. Coherent integration of kinetic solvers requires more effort on the coupling, especially regarding the definition of the boundary between runaway and thermal populations, and on consistent calculation of resistivity. Some of these issues are discussed.