论文标题

3D密集的几何学引导的面部表达通过对抗学习

3D Dense Geometry-Guided Facial Expression Synthesis by Adversarial Learning

论文作者

Bodur, Rumeysa, Bhattarai, Binod, Kim, Tae-Kyun

论文摘要

操纵面部表情是一项艰巨的任务,这是由于面部肌肉产生的细粒度变化以及缺乏用于监督学习的投入输出对。与以前使用生成对抗网络(GAN)的方法不同,这些方法依赖于周期矛盾损失或稀疏的几何形状(地标)损失来表达综合,我们提出了一个新型的GAN框架来利用3D密集(深度和表面正常)信息进行表达操纵。但是,不可用的大规模数据集,其中包含带有表达注释及其相应深度图的RGB图像。为此,我们建议使用现成的最先进的3D重建模型来估计深度,并在手动数据清理过程后创建大规模的RGB深度数据集。我们利用此数据集通过对抗性学习来最大程度地减少新的深度一致性丧失(请注意,我们没有用于生成的面部图像的地面真相深度图)和歧视者的合成数据的深度分类丢失。此外,为了改善深度参数的概括并降低深度参数的偏差,我们建议在框架的歧视者侧使用一种新颖的置信正规器。我们对两个公开可用的面部表达基准:AffactNet和Rafd进行了广泛的定量和定性评估。我们的实验表明,所提出的方法的表现优于竞争性基线和现有艺术的幅度很大。

Manipulating facial expressions is a challenging task due to fine-grained shape changes produced by facial muscles and the lack of input-output pairs for supervised learning. Unlike previous methods using Generative Adversarial Networks (GAN), which rely on cycle-consistency loss or sparse geometry (landmarks) loss for expression synthesis, we propose a novel GAN framework to exploit 3D dense (depth and surface normals) information for expression manipulation. However, a large-scale dataset containing RGB images with expression annotations and their corresponding depth maps is not available. To this end, we propose to use an off-the-shelf state-of-the-art 3D reconstruction model to estimate the depth and create a large-scale RGB-Depth dataset after a manual data clean-up process. We utilise this dataset to minimise the novel depth consistency loss via adversarial learning (note we do not have ground truth depth maps for generated face images) and the depth categorical loss of synthetic data on the discriminator. In addition, to improve the generalisation and lower the bias of the depth parameters, we propose to use a novel confidence regulariser on the discriminator side of the framework. We extensively performed both quantitative and qualitative evaluations on two publicly available challenging facial expression benchmarks: AffectNet and RaFD. Our experiments demonstrate that the proposed method outperforms the competitive baseline and existing arts by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源