论文标题
K [X,Y,Z]的局部nilpotent衍生的Freeness属性
The freeness property for locally nilpotent derivations of k[x,y,z]
论文作者
论文摘要
我们证明了弗洛伊登堡的狂热猜想: 令b为特征零字段的三个变量中的多项式环,令d:b-> b为非零局部nilpotent衍生,然后让a = ker(d)。然后b是一个免费的A模块,并且存在一个基础$(e_i)_ {i \ in \ mathbb {n}} $的b的$,使得deg $ _d(e_i)= i $ for All \ Mathbb {n} $的所有$ i \ for All $ i \。
We prove Freudenburg's Freeness Conjecture: Let B be the polynomial ring in three variables over a field of characteristic zero, let D : B --> B be a nonzero locally nilpotent derivation, and let A = ker(D). Then B is a free A-module, and there exists a basis $(e_i)_{i \in \mathbb{N}}$ of B such that deg$_D(e_i) = i$ for all $i \in \mathbb{N}$.